其他
转载本文需注明出处:微信公众号EAWorld,违者必究。当今,数字化转型正在各行业快速发展,以数据、流量、知识为主的的数字经济时代到来,数据在其中的重要性不言而喻。在企业内部,数据团队正逐渐变成一个专业、独立的部门,未来数据部门的肩上要扛起包括保证数据质量、管理数据架构、提供平台与工具等在内的各种数据相关的职责,来支持各方对数据的使用、形成企业的数据资产。做为支撑数字化转型的基础设施,数据治理已经成为数据团队履行数据职责的重要手段。我们正在尝试通过一些智能化的技术来实现数据治理,建立企业统一的数据工作环境。本文主要介绍了通过智能化的手段来实现大数据治理的一些技巧,以及其中的核心技术。目录:一、治理数据,从发现数据问题开始二、三个智能化大数据治理的案例三、大数据治理的十大智能化能力四、总结一、治理数据,从发现数据问题开始科学探究的过程一般是从发现问题开始的,数据治理也是如此。先发现问题,再寻找解决方法,最后提供相应的技术支撑,这是做数据治理的一般思路。1.企业中常见的四类数据问题在颠覆企业业务的数据经济时代,数据无疑成为企业拥抱变化的基础,数据跟实体一样变成了生产资料的一部分。但是我们仔细观察之后,会发现企业存在着各种各样的数据问题:第一类问题就是数据资产不清晰。现在很多企业都不了解自己的数据,企业中到底有多少数据?数据都是什么样的?这些数据到底可以发挥什么作用?很少有人能准确回答出这些问题。第二类问题是数据质量不高。现在因为数据质量不高而影响企业业务的例子有很多,在这里就不多说了。第三类问题是业务和开发的协作问题。数字经济时代,业务对数据的需求和以前不同了,以前在数据仓库的模式下,开发是先把一些工具归并出来,再做成一个整合提供给业务,现在业务需要进一步明晰数据是什么,要自己看有哪些数据可以发挥出想要的价值。还有一类问题是知识和数据难以关联。比如我们发现拿给业务看的数据和业务概念之间往往不能很好地匹配。举一个金融行业的例子:业务想要一个头寸的数据,但是到底在哪个地方,哪一种头寸说不清楚,像这种数据和知识的关联是很难建立的。2.通过大数据治理提供多种数据服务,从根本上解决数据问题传统数据治理更多是在强调通过一些流程和制度把数据质量提高,并不能很好地解决以上种种数据问题。现在做数据治理,更多是为大家提供统一的数据服务的能力,从而让数据问题得以解决。这样的环境应该包括哪些东西?需要能解决一些什么样的问题?简单总结就是四个字:管(Manage)、看(Browse)、找(Discover)、用(Apply)。管。这部分不用多说,也是之前做数据治理的重点。