查看原文
其他

【Stata教程】面板数据之固定与随机效应汇总

本文由计量经济学服务中心整理自http://dss.princeton.edu/training/等

转载请注明来源


一.面板数据简介


面板数据是非常常见的数据类型,尤其是在经济、金融的研究中,面板数据、时间序列数据的相关模型,得到了极大地发展和广泛的应用。


面板数据,简言之是时间序列和截面数据的混合。严格地讲是指对一组个体(如居民、国家、公司等)连续观察多期得到的资料。所以很多时候我们也称其为“追踪资料”。近年来,由于面板数据资料获得变得相对容易,使得其应用范围也不断扩大。采用面板数据模型进行分析的主要目的在于两个方向:一是控制不可观测的个体异质性,包含两个方面:一是由于民族习惯、风俗文化而形成的、不随着时间移动而改变的个体效应。二是在特定年份而出现的时间效应;二是描述和分析动态调整过程,处理误差成分。使模型包含的信息量更大,降低了变量间共线性的可能性,增加了自由度和估计的有效性。


面板数据,即Panel Data,是截面数据与时间序列综合起来的一种数据资源。 在分析时,多用PanelData模型,故也被称为面板数据模型。 它可以用于分析各样本在时间序列上组成的数据的特征,它能够综合利用样本信息,通过模型中的参数,既可以分析个体之间的差异情况,又可以描述个体的动态变化特征。


面板数据基本上可以认为是同一个截面的观测样本在不同时间节点的重复测量和记录;或者同样也可以认为是若干个结构、记录时间、记录选项相同的时间序列数据的复合结构。因此,在针对面板数据进行分析时候,通常可以使用截面数据的一些方法,同样也可以使用时间序列的一些方法。方法之间的共通性在这一“混合”类型的数据中体现的还是十分明显的。



二.面板数据随机效应与固定效应检验


模型设定过程中最为关键同时也是最难的一步,在这方面功力的提高还需要大量的实践经验和对理论的深入理解。


1)检验个体效应的显著性。我们做固定效应模型时,F检验表明固定效应模型由于混合OLS模型。下面我们说明如何检验随机效应是否显著,命令为:xttest0。若P 值为0.0000,表明随机效应非常显著。


2)Hausman检验。具体步骤为:

step1:估计固定效应模型,存储估计结果;

step2:估计随机效应模型,存储估计结果;

step3:进行Hausman检验;


命令为:

xtreg  GDP FDI EX IM, fe /*step1*/

eststore fe

xtreg GDP FDI EX IM, re /*step2*/

eststore re

hausman fe  re/*step3*/

eststore 的作用在于把估计结果存储到名称为fe,re的临时性文件中。然后我们就可以根据Hausman检验的值进行模型的选择了。注意Hausman检验需要将fe放在re前面。


三.Fixed/random effects (Panel data)


原标题:Panel Data Analysis Fixed and Random Effects using Stata (v. 4.2) 

作者:Oscar Torres-Reyna

链接:http://dss.princeton.edu/training/








您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存