查看原文
其他

最新因果推理课程在线学习,附课件、PPT、书籍和文献资料

最新因果推理课程在线学习,附课件、PPT、书籍和文献资料

因果推理导论

2020年秋季

你已经找到了在线因果推理课程页面。

课程主页

https://www.bradyneal.com/causal-inference-course#course-textbook

这门课程由 Yoshua Bengio 高徒 Brady Neal 主讲,主要讲述因果推理相关知识。尽管课程文本是从机器学习的角度编写的,但这门课程是为任何有必要的先决条件,谁对学习因果关系的基础感兴趣的人。我尽我最大的努力整合来自许多不同领域的见解,利用因果推理,如流行病学、经济学、政治学、机器学习等。

课程安排(初步)

关于幻灯片,请注意:它们目前不能很好地与Adobe Acrobat协同工作,尽管它们似乎可以与其他PDF查看器协同工作。

WeekTopicsLectureReadingsReading Group Paper
August 31Motivation Course Preview Course InformationVideo [Slides](https://www.bradyneal.com/slides/1 - A Brief Introduction to Causal Inference.pdf) InfoChapter 1 of ICINone
September 7Potential Outcomes A Complete Example with EstimationVideo [Slides](https://www.bradyneal.com/slides/2 - Potential Outcomes.pdf)Chapter 2 of ICIDoes obesity shorten life? The importance of well-defined interventions to answer causal questions (Hernán & Taubman, 2008)
September 14Graphical ModelsVideo [Slides](https://www.bradyneal.com/slides/3 - The Flow of Association and Causation in Graphs.pdf)Chapter 3 of ICIDoes Obesity Shorten Life? Or is it the Soda? On Non-manipulable Causes (Pearl, 2018)
September 21Backdoor Adjustment Structural Causal ModelsVideo [Slides](https://www.bradyneal.com/slides/4 - Causal Models.pdf)Chapter 4 of ICISingle World Intervention Graphs: A Primer (Richardson & Robins, 2013)
September 28Randomized Experiments Frontdoor Adjustment do-calculus Graph-Based IdentificationVideo [Slides](https://www.bradyneal.com/slides/5 - Identification.pdf)Chapters 5-6 of ICIOn Pearl’s Hierarchy and the Foundations of Causal Inference (Bareinboim et al., 2020)
October 5Estimation Susan Athey Guest Talk - Estimating Heterogeneous Treatment Effects (Oct 8th at 3 - 4 pm EDT)Video [Slides](https://www.bradyneal.com/slides/6 - Estimation.pdf) Guest TalkChapter 7 of ICIAdapting Neural Networks for the Estimation of Treatment Effects (Shi, Blei, Veitch, 2019)
October 12Unobserved Confounding, Bounds, and Sensitivity AnalysisVideo [Slides](https://www.bradyneal.com/slides/7 - Unobserved Confounding.pdf)Chapter 8 of ICISense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to Unobserved Confounding (Veitch & Zaveri, 2020)
October 19Instrumental VariablesVideo [Slides](https://www.bradyneal.com/slides/8 - Instrumental Variables.pdf)Chapter 9 of ICIDeep IV: A Flexible Approach for Counterfactual Prediction (Hartford et al., 2017)
October 26Difference-in-Differences Alberto Abadie Guest Talk - Synthetic Control (Oct 29th at 10 - 11 am EDT)Video [Slides](https://www.bradyneal.com/slides/9 - Difference-in-Differences.pdf) Guest TalkChapter 10 of ICIRegression Discontinuity Designs in Economics (Lee & Lemieux, 2010)
November 2--- Break Week - No Lecture ---NonePast ReadingsNone
November 9Causal Discovery from Observational Data Jonas Peters Guest Talk (November 13 at 10 am EST)Video [Slides](https://www.bradyneal.com/slides/10 - Causal Discovery from Observational Data.pdf)Chapter 11 of ICIInferring causation from time series in Earth system sciences (Runge et al., 2019)
November 16Causal Discovery from InterventionsVideo [Slides](https://www.bradyneal.com/slides/11 - Causal Discovery from Interventions.pdf)Chapter 12 of ICI (Coming soon)Permutation-based Causal Inference Algorithms with Interventions (Wang et al., 2017)
November 23Transfer Learning TransportabilityVideo [Slides](https://www.bradyneal.com/slides/12 - Transfer Learning and Transportability.pdf)Chapter 13 of ICI (Coming soon)A causal framework for distribution generalization (Christiansen et al., 2020)
November 30Yoshua Bengio Guest Talk - Causal Representation Learning (Dec 1st at 1 - 2:30 pm EST)Guest Talk SlidesNoneInvariant Risk Minimization (Arjovsky et al., 2019)
December 7Counterfactuals MediationVideo [Slides](https://www.bradyneal.com/slides/14 - Counterfactuals and Mediation.pdf)Chapter 14 of ICI (Coming soon)Identifiability of Path-Specific Effects (Avin, Shpitser, & Pearl, 2005)

视频地址:

https://www.youtube.com/watch?v=CfzO4IEMVUk&list=PLoazKTcS0Rzb6bb9L508cyJ1z-U9iWkA0&index=1

课程教材

该课程的配套教材选用了 Brady Neal 编写的 《Introduction to Causal Inference》。需要说明的是,前10章草稿(在整个课程中不断更新新的章节):

教材地址:https://www.bradyneal.com/Introduction_to_Causal_Inference-Aug27_2020-Neal.pdf


论文阅读清单

  1. Motivation and Preview - No reading group

  2. Potential Outcomes

  • Does obesity shorten life? The importance of well-defined interventions to answer causal questions (Hernán & Taubman, 2008)
  • Does Obesity Shorten Life? Or is it the Soda? On Non-manipulable Causes (Pearl, 2018)
  • Graphical Models and SCMs

    • On the Interpretation of do(x) (Pearl, 2019)
    • Quantifying causal influences (Janzing et al., 2012)
    • Trygve Haavelmo and the Emergence of Causal Calculus (Pearl, 2014)
  • Randomized Experiments, Frontdoor Adjustment, and do calculus

    • Single World Intervention Graphs: A Primer (Richardson & Robins, 2013)

    • The Paper of How: Estimating Treatment Effects Using the Front-Door Criterion (Bellemare & Bloem, 2019)

    • On Pearl’s Hierarchy and the Foundations of Causal Inference (Bareinboim et al., 2020)

  • Estimation and Conditional Average Treatment Effects

    • Estimating individual treatment effect: generalization bounds and algorithms (Shalit, Johansson, & Sontag, 2017)
    • Adapting Neural Networks for the Estimation of Treatment Effects (Shi, Blei, Veitch, 2019)
    • Generalized Random Forests (Athey, Tibshirani, Wager, 2019)
    • Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning (Künzel et al., 2017) (caution: not about meta-learning in the ML sense)
  • Sensitivity Analysis

    • Making sense of sensitivity: extending omitted variable bias (Cinelli & Hazlett, 2019)
    • Sense and Sensitivity Analysis: Simple Post-Hoc Analysis of Bias Due to Unobserved Confounding (Veitch & Zaveri, 2020)
    • An Introduction to Sensitivity Analysis for Unobserved Confounding in Non-Experimental Prevention Research (Liu, Kuramoto, & Stuart, 2013)
    • Sensitivity Analysis of Linear Structural Causal Models (Cinelli et al., 2019)
  • Instrumental Variables, Regression Discontinuity, Difference-in-Differences, and Synthetic Control

    • Improving Causal Inference: Strengths and Limitations of Natural Experiments (Dunning, 2007)
    • Alternative Causal Inference Methods in Population Health Research: Evaluating Tradeoffs and Triangulating Evidence (Mattay et al., 2019)
    • Deep IV: A Flexible Approach for Counterfactual Prediction (Hartford et al., 2017)
    • Regression Discontinuity Designs in Economics (Lee & Lemieux, 2010)
    • Synthetic Controls (there are several different Abadie papers; message me, if you’re interested in this topic)
  • BREAK

  • Causal Discovery without Experiments

    • Inferring causation from time series in Earth system sciences (Runge et al., 2019)

    • Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks (Mooij et al., 2016)

    • Do-calculus when the True Graph Is Unknown (Hyttinen, Eberhardt, Jarvisalo, 2015)

    • Review of Causal Discovery Methods Based on Graphical Models (Glymour, Zhang, & Spirtes, 2019)

    • Causal inference by using invariant prediction: identification and confidence intervals (Peters, Bühlmann & Meinshausen, 2016)

    • Nonlinear causal discovery with additive noise models (Hoyer et al., 2008)

    • Causal Discovery from Heterogeneous/Nonstationary Data with Independent Changes (Huang et al., 2020)

  • Causal Discovery with Experiments

    • Experiment Selection for Causal Discovery (Hyttinen, Eberhardt, Hoyer, 2013)
    • Characterization and Greedy Learning of Interventional Markov Equivalence Classes of Directed Acyclic Graphs (Hauser & Bühlmann, 2012)
    • Characterizing and Learning Equivalence Classes of Causal DAGs under Interventions (Yang, Katcoff, & Uhler, 2018)
    • Joint Causal Inference from Multiple Contexts (Mooij, Magliacane, & Claassen, 2020)
  • Transportability and Transfer Learning

    • External Validity: From Do-Calculus to Transportability Across Populations (Pearl & Bareinboim, 2014)
    • A causal framework for distribution generalization (Christiansen et al., 2020)
    • Causal inference and the data-fusion problem (Bareinboim & Pearl, 2016)
    • On Causal and Anticausal Learning (Schölkopf et al., 2012)
    • Domain Adaptation under Target and Conditional Shift (Zhang et al., 2013)
    • Multi-Source Domain Adaptation: A Causal View (Zhang, Gong, & Schölkopf., 2015)
    • Invariant Models for Causal Transfer Learning (Rojas-Carulla et al., 2016)
    • Domain Adaptation As a Problem of Inference on Graphical Models (Zhang et al., 2020)
    • Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions (Magliacane et al., 2018)
  • Counterfactuals, Mediation, and Path-Specific Effects

    • Identification, Inference and Sensitivity Analysis for Causal Mediation Effects (Imai, Keele, & Yamamoto, 2010)
    • Identifiability of Path-Specific Effects (Avin, Shpitser, & Pearl, 2005)
    • Interpretation and Identification of Causal Mediation (Pearl, 2014)
  • TBD - Overflow Week

  • Causal Representation Learning

    • Visual Causal Feature Learning (Chalupka, Perona, & Eberhardt, 2015)
    • Discovering causal signals in images (Lopez-Paz et al., 2017)
    • Invariant Risk Minimization (Arjovsky et al., 2019)


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存