Stata:中介效应之sgmediation操作
中介效应是指变量间的影响关系(X→Y)不是直接的因果链关系,而是通过一个或一个以上变量(M)的间接影响产生的,此时我们称M为中介变量,而X通过M对Y产生的的间接影响称为中介效应。
中介效应是间接效应的一种,模型中在只有一个中介变量的情况下,中介效应等于间接效应;当中介变量不止一个的情况下,中介效应不等于间接效应,此时间接效应可以是部分中介效应和(或)所有中介效应的总和。
自变量X对因变量Y的影响,如果X变量通过影响M变量来影响Y变量,则M为中介变量。
通常将变量经过中心化转化后,得方程1 :Y=cX+e1;
方程2 :M=aX+e2;
方程3 :Y= c′X+bM+e3。
其中,c是X对Y的总效应,a、b是经过中介变量M的中介效应,c′是直接效应。当只有一个中介变量时,效应之间有c=c′+ab,中介效应的大小用c-c′=ab来衡量。
中介效应检验过程
中介效应是间接效应,无论变量是否涉及潜变量,都可以用结构方程模型分析中介效应。
步骤为:
第一步检验系统c,如果c不显著,Y与X相关不显著,停止中介效应分析,如果显著进行第二步;
第二步依次检验a,b,如果都显著,那么检验c′,c′显著,为部分中间效应模型,c′不显著,为完全中介效应模型;
如果a,b至少 有一个不显著,做Sobel检验,检验的统计量是Z = ^a^b / Sab,显著则中介效应显著,不显著则中介效应不显著。
Sobel检验免费的在线计算器:
“http://www.danielsoper.com/statcalc/calc31.aspx”,只要把这a、b、SEa、SEb四个数输入,就可以直接得到Z值及其单侧与双侧概率。
中介效应检验程序Sobel-Goodman mediation tests
语法格式为:
sgmediation depvar [if exp] [in range] , mv:(mediatorvar) iv(indvar) [ cv(covarlist) quietly ]
选项含义为:
depvar表示因变量 mv:(mediatorvar) 表示用于指定中介变量 iv(indvar) 表示用于指定自变量 cv(covarlist)表示用于指定控制变量
案例应用
本例使用hsbdemo数据集,其中science作为DV, math作为IV, read作为中介变量。也就是说,模型说数学影响阅读,而阅读反过来又影响科学。这个模型可能有也可能没有太大的实际意义,但是它将允许我们演示运行一个中介效应测试的过程。我们将使用sgmediation command来完成这个任务,您可以使用findit sgmediation来下载这个命令。
该数据包括200个学生的选择的项目类型(prog, 三种类型 categorical variable), 他们的社会地位(ses 三种地位 categorical variable),写作分数(write, a continuous variable)。导入数据,然后进行查看数据
edit
desc
数据如下:
. help sgmediation
. use "C:\Users\Metrics\Desktop\hsbdemo.dta", clear
(highschool and beyond (200 cases))
. desc
Contains data from C:\Users\Metrics\Desktop\hsbdemo.dta
obs: 200 highschool and beyond (200 cases)
vars: 13 30 Oct 2009 14:13
size: 10,000
--------------------------------------------------------------------------------------
storage display value
variable name type format label variable label
--------------------------------------------------------------------------------------
id float %9.0g
female float %9.0g fl
ses float %9.0g sl
schtyp float %9.0g scl type of school
prog float %9.0g sel type of program
read float %9.0g reading score
write float %9.0g writing score
math float %9.0g math score
science float %9.0g science score
socst float %9.0g social studies score
honors float %19.0g honlab honors english
awards float %9.0g
cid int %8.0g
--------------------------------------------------------------------------------------
Sorted by:
. set more off
进行操作为:
sgmediation science, mv(read) iv(math)
结果为:
. sgmediation science, mv(read) iv(math)
# 表示mv(read)为中介变量,iv(math)为自变量
Model with dv regressed on iv (path c)
Source | SS df MS Number of obs = 200
-------------+---------------------------------- F(1, 198) = 130.81
Model | 7760.55791 1 7760.55791 Prob > F = 0.0000
Residual | 11746.9421 198 59.3279904 R-squared = 0.3978
-------------+---------------------------------- Adj R-squared = 0.3948
Total | 19507.5 199 98.0276382 Root MSE = 7.7025
------------------------------------------------------------------------------
science | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
math | .66658 .0582822 11.44 0.000 .5516466 .7815135
_cons | 16.75789 3.116229 5.38 0.000 10.61264 22.90315
------------------------------------------------------------------------------
Model with mediator regressed on iv (path a)
# 形成路劲a
Source | SS df MS Number of obs = 200
-------------+---------------------------------- F(1, 198) = 154.70
Model | 9175.57065 1 9175.57065 Prob > F = 0.0000
Residual | 11743.8493 198 59.3123704 R-squared = 0.4386
-------------+---------------------------------- Adj R-squared = 0.4358
Total | 20919.42 199 105.122714 Root MSE = 7.7015
------------------------------------------------------------------------------
read | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
math | .724807 .0582745 12.44 0.000 .6098887 .8397253
_cons | 14.07254 3.115819 4.52 0.000 7.928087 20.21699
------------------------------------------------------------------------------
Model with dv regressed on mediator and iv (paths b and c')
Source | SS df MS Number of obs = 200
-------------+---------------------------------- F(2, 197) = 90.27
Model | 9328.73944 2 4664.36972 Prob > F = 0.0000
Residual | 10178.7606 197 51.6688353 R-squared = 0.4782
-------------+---------------------------------- Adj R-squared = 0.4729
Total | 19507.5 199 98.0276382 Root MSE = 7.1881
------------------------------------------------------------------------------
science | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
read | .3654205 .0663299 5.51 0.000 .2346128 .4962283
math | .4017207 .0725922 5.53 0.000 .2585632 .5448782
_cons | 11.6155 3.054262 3.80 0.000 5.592255 17.63875
------------------------------------------------------------------------------
Sobel-Goodman Mediation Tests
# 程序检验
Coef Std Err Z P>|Z|
Sobel .26485934 .05258136 5.037 4.726e-07
Goodman-1 (Aroian) .26485934 .05272324 5.024 5.072e-07
Goodman-2 .26485934 .05243909 5.051 4.400e-07
Coef Std Err Z P>|Z|
a coefficient = .724807 .058274 12.4378 0
b coefficient = .365421 .06633 5.50914 3.6e-08
Indirect effect = .264859 .052581 5.03713 4.7e-07
Direct effect = .401721 .072592 5.53394 3.1e-08
Total effect = .66658 .058282 11.4371 0
Proportion of total effect that is mediated: .39734065
Ratio of indirect to direct effect: .65931219
Ratio of total to direct effect: 1.6593122
In this example the mediation effect of read was statistically significant with approximately 40% of the total effect (of math onscience) being mediated.
在这个例子中,read的中介效果在统计上是显著的,通过这个可以得到(Proportion of total effect that is mediated: .39734065)大约40%的总效果(数学对科学)是被中介的。
操作案例2
如果需要加入协变量,则为如下命令
sgmediation science, mv(read) iv(math) cv(write)
结果为:
sgmediation science, mv(read) iv(math) cv(write)
Model with dv regressed on iv (path c)
Source | SS df MS Number of obs = 200
-------------+---------------------------------- F(2, 197) = 80.84
Model | 8793.36552 2 4396.68276 Prob > F = 0.0000
Residual | 10714.1345 197 54.3864694 R-squared = 0.4508
-------------+---------------------------------- Adj R-squared = 0.4452
Total | 19507.5 199 98.0276382 Root MSE = 7.3747
------------------------------------------------------------------------------
science | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
math | .4757015 .07094 6.71 0.000 .3358022 .6156009
write | .3055482 .0701157 4.36 0.000 .1672745 .443822
_cons | 10.68138 3.293391 3.24 0.001 4.186557 17.17621
------------------------------------------------------------------------------
Model with mediator regressed on iv (path a)
Source | SS df MS Number of obs = 200
-------------+---------------------------------- F(2, 197) = 96.80
Model | 10368.63 2 5184.31501 Prob > F = 0.0000
Residual | 10550.79 197 53.5573096 R-squared = 0.4956
-------------+---------------------------------- Adj R-squared = 0.4905
Total | 20919.42 199 105.122714 Root MSE = 7.3183
------------------------------------------------------------------------------
read | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
math | .5196538 .0703972 7.38 0.000 .380825 .6584826
write | .3283984 .0695792 4.72 0.000 .1911828 .4656141
_cons | 7.541599 3.26819 2.31 0.022 1.096471 13.98673
------------------------------------------------------------------------------
Model with dv regressed on mediator and iv (paths b and c')
Source | SS df MS Number of obs = 200
-------------+---------------------------------- F(3, 196) = 65.32
Model | 9752.65806 3 3250.88602 Prob > F = 0.0000
Residual | 9754.84194 196 49.7696017 R-squared = 0.4999
-------------+---------------------------------- Adj R-squared = 0.4923
Total | 19507.5 199 98.0276382 Root MSE = 7.0548
------------------------------------------------------------------------------
science | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
read | .3015317 .0686815 4.39 0.000 .1660822 .4369813
math | .3190094 .0766753 4.16 0.000 .167795 .4702239
write | .2065257 .0707644 2.92 0.004 .0669683 .3460831
_cons | 8.407353 3.192799 2.63 0.009 2.110703 14.704
------------------------------------------------------------------------------
Sobel-Goodman Mediation Tests
Coef Std Err Z P>|Z|
Sobel .15669211 .04152593 3.773 .00016107
Goodman-1 (Aroian) .15669211 .04180646 3.748 .00017822
Goodman-2 .15669211 .0412435 3.799 .00014517
Coef Std Err Z P>|Z|
a coefficient = .519654 .070397 7.38174 1.6e-13
b coefficient = .301532 .068681 4.39029 .000011
Indirect effect = .156692 .041526 3.77336 .000161
Direct effect = .319009 .076675 4.16053 .000032
Total effect = .475702 .07094 6.70569 2.0e-11
Proportion of total effect that is mediated: .32939164
Ratio of indirect to direct effect: .49118333
Ratio of total to direct effect: 1.4911833
.
操作案例3 bootstrap with case resampling
bootstrap r(ind_eff) r(dir_eff), reps(1000): sgmediation science, mv(read) iv(math)
estat bootstrap, percentile bc
结果为:
bootstrap r(ind_eff) r(dir_eff), reps(1000): sgmediation science, mv(read) iv(math)
(running sgmediation on estimation sample)
Bootstrap replications (1000)
----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5
.................................................. 50
.................................................. 100
.................................................. 150
.................................................. 200
.................................................. 250
.................................................. 300
.................................................. 350
.................................................. 400
.................................................. 450
.................................................. 500
.................................................. 550
.................................................. 600
.................................................. 650
.................................................. 700
.................................................. 750
.................................................. 800
.................................................. 850
.................................................. 900
.................................................. 950
.................................................. 1000
Bootstrap results Number of obs = 200
Replications = 1,000
command: sgmediation science, mv(read) iv(math)
_bs_1: r(ind_eff)
_bs_2: r(dir_eff)
------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_bs_1 | .2648593 .0548346 4.83 0.000 .1573855 .3723332
_bs_2 | .4017207 .0819454 4.90 0.000 .2411106 .5623307
------------------------------------------------------------------------------
.
. estat bootstrap, percentile bc
Bootstrap results Number of obs = 200
Replications = 1000
command: sgmediation science, mv(read) iv(math)
_bs_1: r(ind_eff)
_bs_2: r(dir_eff)
------------------------------------------------------------------------------
| Observed Bootstrap
| Coef. Bias Std. Err. [95% Conf. Interval]
-------------+----------------------------------------------------------------
_bs_1 | .26485934 -.0057812 .05483462 .1520132 .3652509 (P)
| .1712486 .3799049 (BC)
_bs_2 | .40172068 .0059509 .08194541 .2422861 .563365 (P)
| .2336006 .5417721 (BC)
------------------------------------------------------------------------------
(P) percentile confidence interval
(BC) bias-corrected confidence interval
References
Aroian, L.A. (1944). The probability function of the product of two normally distributed variables. Annals of Mathematical Statistics, 18, 265-271.
Baron, R.M. & Kenny, D.A. (1986), Moderator-Mediator Variables Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. Journal of Personality and Social Psychology, 51 (6), 1173–82.
Goodman, L.A. (1960) On the exact variance of products. Journal of the American Statistical Association, 55, 708-713.
MacKinnon, D. P. & Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. Evaluation Review, 17, 144-158.
MacKinnon, D. P., Warsi, G., & Dwyer, J. H. (1995). A simulation study of mediated effect measures. Multivariate Behavioral Research, 30(1), 41-62.
Preacher, K. J. & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behavior Research Methods, Instruments, & Computers, 36(4), 717-731.
Sobel, M.E. (1982) Asymptotic confidence intervals for indirect effects in structural equation models. Sociological Methodology, 13, 290-312.
Sobel, M.E. (1986) Some new results on indirect effects and their standard errors in covariance structure models. Sociological Methodology, 16, 159-186.