查看原文
其他

我把「链路追踪」整明白了

脚本之家 2022-04-23

The following article is from 悟空聊架构 Author 悟空聊架构

 关注“脚本之家”,与百万开发者在一起

作者 | 悟空聊架构

来源 | 悟空聊架构(ID:PassJava666)

转载请联系授权(微信ID:PassJava)

本篇主要内容

这篇主要是理论 + 实践相结合。实践部分涉及到如何把链路追踪组件 Sleuth + Zipkin 加到我的 Spring Cloud 《佳必过》开源项目上。

本篇知识点:

  • 链路追踪基本原理
  • 如何在项目中轻松加入链路追踪中间件
  • 如何使用链路追踪排查问题

一、为什么要用链路追踪?

1.1 因:拆分服务单元

微服务架构其实是一个分布式的架构,按照业务划分成了多个服务单元。

由于服务单元的数量是很多的,有可能几千个,而且业务也会更复杂,如果出现了错误和异常,很难去定位。

1.2 因:逻辑复杂

比如一个请求需要调用多个服务才能完成整个业务闭环,而内部服务的代码逻辑和业务逻辑比较复杂,假如某个服务出现了问题,是难以快速确定那个服务出问题的。

1.3 果:快速定位

而如果我们加上了分布式链路追踪,去跟踪一个请求有哪些服务参与其中,参与的顺序是怎样的,这样我们就知道了每个请求的详细经过,即使出了问题也能快速定位。

二、链路追踪的核心

链路追踪组件有 Twitter 的可视化链路追踪组件 Zipkin、Google 的 Dapper、阿里的 Eagleeye 等,而 Sleuth 是 Spring Cloud 的组件。Spring Cloud Sleuth 借鉴了 Dapper 的术语。

本文主要讲解 Sleuth + Zipkin 结合使用来更好地实现链路追踪。

为什么能够进行整条链路的追踪?其实就是一个 Trace ID 将 一连串的 Span 信息连起来了。根据 Span 记录的信息再进行整合就可以获取整条链路的信息。下面是链路追踪的核心概念:

2.1 Span(跨度)

  • 大白话:远程调用和 Span  一对一

  • 基本的工作单元,每次发送一个远程调用服务就会产生一个 Span。

  • Span 是一个 64 位的唯一 ID。

  • 通过计算 Span 的开始和结束时间,就可以统计每个服务调用所花费的时间。

2.2 Trace(跟踪)

  • 大白话:一个 Trace 对应多个 Span,一对多

  • 它由一系列 Span 组成,树状结构。

  • 64 位唯一 ID。

  • 每次客户端访问微服务系统的 API 接口,可能中间会调用多个微服务,每次调用都会产生一个新的 Span,而多个 Span 组成了 Trace

2.3 Annotation(注解)

链路追踪系统定义了一些核心注解,用来定义一个请求的开始和结束,注意是微服务之间的请求,而不是浏览器或手机等设备。注解包括:

  • cs - Client Sent:客户端发送一个请求,描述了这个请求调用的 Span 的开始时间。注意:这里的客户端指的是微服务的调用者,不是我们理解的浏览器或手机等客户端。
  • sr - Server Received:服务端获得请求并准备开始处理它,如果将其 sr 减去 cs 时间戳,即可得到网络传输时间。
  • ss - Server Sent:服务端发送响应,会记录请求处理完成的时间,ss 时间戳减去 sr 时间戳,即可得到服务器请求的时间。
  • cr - Client Received:客户端接收响应,Span 的结束时间,如果 cr 的时间戳减去 cs 时间戳,即可得到一次微服务调用所消耗的时间,也就是一个 Span 的消耗的总时间。

2.4 链路追踪原理

假定三个微服务调用的链路如下图所示:Service 1 调用 Service 2Service 2 调用 Service 3 和 Service 4。

微服务调用链路图

那么链路追踪会在每个服务调用的时候加上 Trace ID 和 Span ID。如下图所示:

链路追踪原理图

大白话解释:

  • 大家注意上面的颜色,相同颜色的代表是同一个 Span ID,说明是链路追踪中的一个节点。

  • 第一步:客户端调用 Service 1,生成一个 RequestTrace IDSpan ID 为空,那个时候请求还没有到 Service 1

  • 第二步:请求到达 Service 1,记录了 Trace ID = X,Span ID 等于 A。

  • 第三步:Service 1 发送请求给 Service 2,Span ID 等于 B,被称作 Client Sent,即客户端发送一个请求。

  • 第四步:请求到达 Service 2,Span ID 等于 B,Trace ID 不会改变,被称作 Server Received,即服务端获得请求并准备开始处理它。

  • 第五步:Service 2 开始处理这个请求,处理完之后,Trace ID 不变,Span ID = C。

  • 第六步:Service 2 开始发送这个请求给 Service 3,Trace ID 不变,Span ID = D,被称作 Client Sent,即客户端发送一个请求。

  • 第七步:Service 3 接收到这个请求,Span ID = D,被称作 Server Received。

  • 第八步:Service 3 开始处理这个请求,处理完之后,Span ID = E。

  • 第九步:Service 3 开始发送响应给 Service 2,Span ID = D,被称作 Server Sent,即服务端发送响应。

  • 第十步:Service 3 收到 Service 2 的响应,Span ID = D,被称作 Client Received,即客户端接收响应。

  • 第十一步:Service 2 开始返回 响应给 Service 1,Span ID = B,和第三步的 Span ID 相同,被称作 Client Received,即客户端接收响应。

  • 第十二步:Service 1 处理完响应,Span ID = A,和第二步的 Span ID 相同。

  • 第十三步:Service 1 开始向客户端返回响应,Span ID = A、

  • Service 3 向 Service 4 发送请求和 Service 3 类似,对应的 Span ID 是 F 和 G。可以参照上面前面的第六步到第十步。

把以上的相同颜色的步骤简化为下面的链路追踪图:

链路追踪父子节点图
  • 第一个节点:Span ID = A,Parent ID = null,Service 1 接收到请求。
  • 第二个节点:Span ID = B,Parent ID= A,Service 1 发送请求到 Service 2 返回响应给 Service 1 的过程。
  • 第三个节点:Span ID = C,Parent ID= B,Service 2 的 中间处理过程。
  • 第四个节点:Span ID = D,Parent ID= C,Service 2 发送请求到 Service 3 返回响应给 Service 2 的过程。
  • 第五个节点:Span ID = E,Parent ID= D,Service 3 的中间处理过程。
  • 第六个节点:Span ID = F,Parent ID= C,Service 3 发送请求到 Service 4 返回响应给 Service 3 的过程。
  • 第七个节点:Span ID = G,Parent ID= F,Service 4 的中间处理过程。

通过 Parent ID 即可找到父节点,整个链路就可以进行跟踪追溯了。

三、Spring Cloud 整合 Sleuth

大家可以参照我的 GitHub 开源项目 PassJava(佳必过)。

3.1 引入 Spring Cloud 依赖

在 passjava-common 中引入 Spring Cloud 依赖

因为我们使用的链路追踪组件 Sleuth 是 Spring Cloud 的组件,所以我们需要引入 Spring Cloud 依赖。


    
        
        
            org.springframework.cloud
            spring-cloud-dependencies
            Hoxton.SR3
            <type>pomtype>
            import
        
    


3.2 引入Sleuth依赖

引入链路追踪组件 Sleuth 非常简单,在 pom.xml 文件中引入 Sleuth 依赖即可。

在 passjava-common 中引入 Sleuth 依赖:


<dependency>
 <groupId>org.springframework.cloudgroupId>
    <artifactId>spring-cloud-starter-sleuthartifactId>
dependency>

3.3 通过日志观察链路追踪

我们先不整合 zipkin 链路追踪可视化组件,而是通过日志的方式来查看链路追踪信息。

文件路径:\PassJava-Platform\passjava-question\src\main\resources\application.properties
添加配置:
logging.level.org.springframework.cloud.openfeign=debug
logging.level.org.springframework.cloud.sleuth=debug

3.4 启动微服务

启动以下微服务:

  • passjava-gateway 服务(网关)

  • passjava-question 服务(题目中心微服务)

  • renren 服务(Admin 后台管理服务)

    启动成功后如下图所示:

启动微服务

3.5 测试跟踪请求

打开 Admin 后台,访问题目中心->题目配置页面,可以看到发送了下面的请求:

http://localhost:8060/api/question/v1/admin/question/list?t=1605170539929&page=1&limit=10&key=
佳必过项目的后台界面

打开控制台,可以看到打印出了追踪日志。

链路追踪日志

说明:

  • 当没有配置 Sleuth 链路追踪的时候,INFO 信息里面是 [passjava-question,,,],后面跟着三个空字符串。
  • 当配置了 Sleuth 链路追踪的时候,追踪到的信息是 [passjava-question,504a5360ca906016,e55ff064b3941956,false] ,第一个是 Trace ID,第二个是 Span ID。

四、Zipkin 链路追踪原理

上面我们通过简单的引入 Sleuth 组件,就可以获取到调用链路,但只能通过控制台的输出信息来看,不太方便。

Zipkin 油然而生,一个图形化的工具。Zipkin 是 Twitter 开源的分布式跟踪系统,主要用来用来收集系统的时序数据,进而可以跟踪系统的调用问题。

而且引入了 Zipkin 组件后,就不需要引入 Sleuth 组件了,因为 Zipkin 组件已经帮我们引入了。

Zipkin 的官网:https://zipkin.io

4.1 Zipkin 基础架构

Zipkin 基础架构

Zipkin 包含四大组件:

  • Collection(收集器组件),主要负责收集外部系统跟踪信息。
  • Storage(存储组件),主要负责将收集到的跟踪信息进行存储,默认存放在内存中,支持存储到 MySQL 和 ElasticSearch。
  • API(查询组件),提供接口查询跟踪信息,给 UI 组件用的。
  • UI (可视化 Web UI 组件),可以基于服务、时间、注解来可视化查看跟踪信息。注意:Web UI 不需要身份验证。

4.2 Zipkin 跟踪流程

Zipkin 跟踪流程

流程解释:

  • 第一步:用户代码发起 HTTP Get 请求,请求路径:/foo。
  • 第二步:请求到到跟踪工具后,请求被拦截,会被记录两项信息:标签和时间戳。以及HTTP Headers 里面会增加跟踪头信息。
  • 第三步:将封装好的请求传给 HTTP 客户端,请求中包含 X-B3-TraceID 和 X-B3-SpanId 请求头信息。
  • 第四步:由HTTP 客户端发送请求。
  • 第五步:Http 客户端返回响应 200 OK 后,跟踪工具记录耗时时间。
  • 第六步:跟踪工具发送 200 OK 给用户端。
  • 第七步:异步报告 Span 信息给 Zipkin 收集器。

五、整合 Zipkin 可视化组件

5.1 启动虚拟机并连接

vagrant up
启动虚拟机

接着就可以用 Xshell 工具连接虚拟机了。下面是在命令行里面执行相关操作。

5.2 docker 安装 zipkin 服务

  • 使用以下命令开始拉取 zipkin 镜像并启动 zipkin 容器。
docker run -d -p 9411:9411 openzipkin/zipkin
  • 命令执行完后,会执行下载操作和启动操作。
docker 安装 zipkin 服务
  • 使用 docker ps 命令可以看到 zipkin 容器已经启动成功了。如下图所示:
zipkin 容器启动成功
  • 在浏览器窗口打开 zipkin UI

访问服务地址:http://192.168.56.10:9411/zipkin。

5.3 引入 Zipkin 依赖

在公共模块引入 zipkin 依赖


<dependency>
    <groupId>org.springframework.cloudgroupId>
    <artifactId>spring-cloud-starter-zipkinartifactId>
dependency>

因为 zipkin 包里面已经引入了 sleuth 组件,所以可以把之前引入的 sleuth 组件删掉。

5.4 添加 Zipkin 配置

在需要追踪的微服务模块下添加 zipkin 配置。

# zipkin 的服务器地址
spring.zipkin.base-url=http://192.168.56.10:9411/
# 关闭服务发现,否则 Spring Cloud 会把 zipkin 的 URL 当作服务名称。
spring.zipkin.discovery-client-enabled=false
# 设置使用 http 的方式传输数据,也可以用 RabbitMQ 或 Kafka。
spring.zipkin.sender.type=web
# 设置采样率为 100 %,默认为 0.1(10%)
spring.sleuth.sampler.probability=1

5.5 测试 Zipkin 是否工作

这里我在 passjava-member 微服务中写了一个 API:

passjava-member 服务的 API:getMemberStudyTimeListTest,

访问路径为/studytime/list/test/{id}。

passjava-member 服务远程调用 passjava-study 服务。

对应的 API:getMemberStudyTimeListTest。

我用 postman 工具测试 passjava-member 服务的 API:

测试 Passjava-member 服务的 API

打开 Zipkin 工具,搜索 passjava-member 的链路追踪日志,可以看到有一条记录,相关说明如下图所示:

zipkin 示例

从图中可以看到 passjava-member 微服务调用了 passjava-study 微服务,如图中左半部分所示。

而且 passjava-study 微服务详细的调用时间都记录得非常清楚,如图中右半部分所示。

时间计算:

  • 请求传输时间:Server Start - Client Start = 2.577s-2.339s = 0.238s
  • 服务端处理时间:Server Finish - Server Start = 2.863s - 2.577s = 0.286s
  • 请求总耗时:Client Finish - Client Start = 2.861s - 2.339s = 0.522s
  • Passjava-member 服务总耗时:3.156 s
  • Passjava-study 服务总耗时:0.521s
  • 由此可以看出 passjava-member 服务花费了很长时间,性能很差

另外还可以用图表的方式查看跟踪信息,这里不做展开了。

图表的方式查看

六、Zipkin 数据持久化

6.1 Zipkin 支持的数据库

Zipkin 存储数据默认是放在内存中的,如果 Zipkin 重启,那么监控数据也会丢失。如果是生成环境,数据丢失会带来很大问题,所以需要将 Zipkin 的监控数据持久化。而 Zipkin 支持将数据存储到以下数据库:

  • 内存(默认,不建议使用)
  • MySQL(数据量大的话, 查询较为缓慢,不建议使用)
  • Elasticsearch(建议使用)
  • Cassandra(国内使用 Cassandra 的公司较少,相关文档也不多)

6.2 使用 Elasticsearch 作为储存介质

  • 通过 docker 的方式配置 elasticsearch 作为 zipkin 数据的存储介质。
docker run --env STORAGE_TYPE=elasticsearch --env ES_HOSTS=192.168.56.10:9200 openzipkin/zipkin-dependencies
  • ES 作为存储介质的配置参数:
ES 作为存储介质的配置参数

七、总结

本篇讲解了链路追踪的核心原理,以及 Sleuth + Zipkin 的组件的原理,以及将这两款组件加到了我的开源项目《佳必过》里面了。

开源项目地址:https://github.com/Jackson0714/PassJava-Platform

(完)

  推荐阅读:惨痛亲历:一行代码,百万人民币打水漂
漫画:什么是 “千年虫” 问题?
腾讯竟然是这样招人的,哈哈哈哈哈
每日打卡赢积分兑换书籍入口👇🏻👇🏻👇🏻

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存