2020硬核图书系列:《知识图谱:概念与技术》
小编说: 疫情像施了魔法一样,改变了我们每个人春节的轨迹。时间则从永远不够用突然变成了多得似乎不知干什么用。博文君希望疫情没有改变我们那颗求知若渴的心。
博文菌在前两天已经为您开放了博文视点学院平台上80余本电子书+有声书,供大家免费学习,现在还将连续为您推荐2020必读力作。
人与人的差距也可能就在这个不知何时结束的假期中拉开了。小伙伴们加油!
█ 今 日 主 角 █
2012年Google发布知识图谱以来,知识图谱技术飞速发展,其理论体系日趋完善,其应用效果日益明显。在知识图谱技术的引领下,知识工程新的历史篇章——大数据知识工程已初具轮廓;在知识图谱技术的推动下,各行各业的智能化升级与转型的宏伟画卷正逐步展开。
知识图谱能解决很多问题,比如,知识图谱可以让机器实现语言认知、人工智能、与数据驱动一道成为另外一种解决问题的范式,比如应用在搜索、决策、问答、支持等等。
知识图谱是较为典型的交叉领域,涉及了知识工程、自然语言处理、机器学习、图数据库等多个领域。面对如此庞杂的知识体系,下文为大家带来几点建议。
█ 知识图谱的入门建议 █
无论是一名学生还是一名从业人员,真正要了解所谓的“知识”,阅读是一个很重要途径,所以说要从读一本好书开始。
另外,要牢固掌握基础知识和技能。知识表示、数据库(图数据库)管理、自然语言处理、机器学习(深度学习),这些都是要掌握的基本技能,有了这些基础以后,无论是深入学知识图谱,还是看书、理解模型,都会比较顺,更能读懂、理解。
因为知识图谱是一门偏应用、偏工程的学科,所以落地实践非常重要。只有真正的去实践,并秉持数据驱动、应用导向的思想,真正的完成了一个实际的工程项目,碰到实际的问题真正去解决了以后,才能有更好的领悟体会,最终才能有更大的收获。
最后,由于知识图谱才刚刚起步,还有很多挑战和问题没有解决,有些相关研究还不多,技术不够成熟,暂无真正成功的落地实践。知识图谱领域还有很多挑战,我们要以开放的心态去直面挑战,然后通过解决实际问题中获得的收获,逐渐形成体系,让我们知识的积累、书籍的积累越来越多,才能让我们的学科研究、从业队伍、及各项事业更好的向前发展。
█ 鸿篇巨制《知识图谱》 █
随着知识图谱技术研究与应用的深化,知识图谱技术吸引了来自工业界与学术界的广泛关注。知识图谱领域涌现出大量的理论与技术研究成果,以及一批优秀的工程实践案例。一方面,对于这些理论工作与工程实践,需要进行系统性的梳理;另一方面,随着研究与应用的深入,业界也迫切需要一本系统性的知识图谱教材。
鉴于此,复旦大学知识工场实验室创始人肖仰华教授携团队带来了人工智能领域重量级作品——《知识图谱:概念与技术》
本书紧密围绕知识图谱开展知识体系的梳理,尽量突出知识图谱与相关学科(特别是自然语言处理、语义网与数据库等学科)的差别,尽可能的为大家清晰地界定知识图谱与各分支学科的根本不同。
不同于市面上的其他相关书籍,本书更加注重的是关于知识图谱的整个知识体系,从最基础的基本概念、基础理论到设计、技术、模型、方法都做了全面的介绍。
本书的内容体系基本成型于2018年8月,从2017年到2019年,其先后两次在复旦大学相关课程中进行讲授,2018年8月和12月其分别在上海财经大学和北京理工大学面向全国公开讲授,累计近千人次完成了课程的学习。从2018年年底至今,本书编写组完成了书稿,并经多轮修订,最终形成大家手中的这个版本。█ 关于主要作者
全书共五篇,由16章构成,力求涵盖知识图谱相关的基本概念与关键技术。
第2篇 构建篇
第3篇 管理篇
第4篇 应用篇
第5篇 实践篇
热文推荐