图4. (a)Wenzel模型、Cassie-Baxter模型可以解释表面具有圆柱的材料疏水特性,但难以解释开锅之后铁锅具有的“条件疏水性”。(b)-(d)铁锅表面的Fe3O4纳米球赋予铁锅“条件疏水性”,并保证了食材烹制后的鲜嫩多汁。4. 机理那么在开锅过程中,铁锅表面到底经历了什么才使得其表面生长出茂盛的Fe3O4纳米球呢?作者探究了Fe3O4纳米球的生长机理。如图5(a)所示,动物油与动物油/铁锅体系在氧气气氛下的热重图中可以看到,单纯的动物油随着温度的升高而逐渐失重;而当动物油涂抹在铁锅表面进行测试时,其在390~460℃区间失重速率显著变慢,失重曲线有明显的向上突起的现象。这说明在这一温度区间,铁锅表面发生了增重反应,减缓了动物油/铁锅体系的失重速率。而这一增重反应,就是铁氧化为Fe3O4的过程。图5. (a)动物油与动物油/铁锅体系的热重图。(b)动物油分解与氧气嵌入铁晶格示意图;(c)铁原子配位行为变化图;(d)、(e)多次涂油-灼烧过程中的Fe3O4纳米球生长机理。油脂挥发的同时,铁表面被氧化恰恰是Fe3O4纳米球形成的关键。如图5(b)所示,随着油脂的挥发,铁表面氧气浓度逐渐上升,氧原子逐渐嵌入铁晶格内部,将Fe氧化,并使晶格膨胀;而随着再次涂抹油脂,受到油脂阻隔的缘故,铁表面氧气蒸气压下降,氧原子会向铁晶格外部迁移,造成晶格收缩,而油脂逐渐的挥发又会重新造成晶格氧原子嵌入,晶格重新膨胀。如图5(d)、(e)所示,这种重复的晶格收缩-膨胀,伴随着铁原子四配位-六配位的转换,会逐渐炸裂铁锅表面,生长出大量的Fe3O4纳米球——也就是开锅过程获得食神祝福的纳米科学真相。5. 未来尽管全氟骨架的不粘锅已经畅销至全世界,但由于其在生产与使用中所产生的环境、安全等问题日益显著,人们对不粘锅产生了越来越多的顾虑和质疑。然而勤劳勇敢的沙坪坝群众从不担心在夜市上吃到任何一口特氟龙碎片,毕竟有着几千年历史的中华铸铁锅早已给了他们最深刻的文化自信。 “根本就没有食神,或者说人人都是食神。” Nano Materials Science:2019年3月创刊,重庆大学主办,香港城市大学吕坚院士任主编,20个国家132名顶尖科学家任编委,其中院士17位,ScienceDirect全文开放获取,旨在搭建纳米材料科学学术交流平台,主要关注纳米结构材料和纳米功能材料的制备与加工、材料基因表征、材料性能评价及应用,以及纳米器件的设计、制备、加工、评价及应用等方面最新研究成果,刊发成果已被50个国家及地区和135种SCIE期刊引用报道。 作者简介: 魏子栋:教育部长江学者特聘教授,重庆大学化学化工学院院长,“化工过程强化与反应国家地方联合工程实验室”主任,重庆市“新能源化工”创新团队学术带头人。《化学学报》《化工学报》《物理化学学报》《催化学报》《化学通报》《电化学》《储能科学与技术》《Electrochem Energy Review》《The Scientific World JOURNAL: Chemical Engineering》《Innovations in Corrosion and Materials Science》等期刊编委;国家自然科学基金委第十三、十四届化学科学部专家评审组成员,中国化学会理事、电化学专业委员会委员、催化化学专业委员会委员,中国化工学会理事,中国电子学会电子电镀专业委员会副主任委员,中国机械工程学会电镀与精饰专业委员会副主任委员,中国科学院大连化物所兼职研究员,西安交通大学兼职教授,航天061基地“特种化学电源国家重点实验室”、中国科学院大连化物所“燃料电池与氢源技术国家工程中心”、武汉理工大学“燃料电池湖北省重点实验室”、华南理工大学“燃料电池技术广东省重点实验室”和西北大学“陕北能源先进化工利用技术教育部工程研究中心”学术委员会或技术委员会委员。E-mail:zdwei@cqu.edu.cn 李存璞:河南开封人,1986年出生,重庆大学化学化工学院副教授,博士生导师。在清华大学化学系与核能与新能源技术研究院分别取得学士及博士学位。博士毕业后就职于重庆大学化学化工学院,主要从事低成本、高性能阴离子交换膜的设计与合成、锂硫电池高效隔膜、金属-空气电池催化层的研究。以第一作者和通信作者发表SCI论文10余篇,主持国家自然科学基金与国防项目等多项。E-mail:lcp@cqu.edu.cn参考文献[1] Fritsch RM, Keusgen M. Occurrence and taxonomic significance of cysteine sulphoxides in the genus Allium L.(Alliaceae). Phytochemistry, 2006, 67(11): 1127-1135.https://www.sciencedirect.com/science/article/pii/S0031942206001518[2] Gao CX, Yang N, Li CP, et al. Seasoning Chinese cooking pans: The nanoscience behind the Kitchen God's blessing, Nano Materials Science, https://doi.org/10.1016/j.nanoms.2020.06.001[3] Ishino C, Okumura K. Wetting transitions on textured hydrophilic surfaces. The European Physical Journal E, 2008, 25(4): 415-424.https://link.springer.com/content/pdf/10.1140/epje/i2007-10308-y.[4] Marmur A. Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?. Langmuir, 2003, 19(20): 8343-8348.https://pubs.acs.org/doi/abs/10.1021/la0344682