查看原文
其他

一招带你重温经典、重温儿时记忆






前言




每个人心中总有那么几部挥之不去的老电影,然而,电视中播放出那些熟悉的经典镜头时,很多时候画面模糊,难以体验到高清质感带来的视觉享受。随着科技的发展,现在家庭大多使用4K高清电视,不要说480P、720P,就连1080P都满足不了高品质家庭的观影需求,所以非4K转4K、8K HDR高清视频将成为市场主流趋势。

值得庆幸的是AI视频修复横空出世了,它并不是简单地把低分辨率的视频放大输出成高分辨率,而是通过生成对抗网络(Generative Adversarial Networks,GAN),实现老视频修复。



项目介绍




飞桨生成对抗网络开发套件PaddleGAN,集成风格迁移、超分辨率、动漫画生成、图片上色、人脸属性编辑、妆容迁移等SOTA算法,以及预训练模型。并且模块化设计,以便开发者进行二次研发,或是直接使用预训练模型做应用。

本项目就是基于PaddleGAN中的着色算法、修复算法、插帧算法模型,从而轻松实现了低清黑白电影转变成高清彩色电影,修复老电影磨损划痕画面,提高帧率让画面人物动作更流畅,还可以增强色彩使画质更饱满,AI修复后效果能达到高清标准,满足了人们日益增长的美好生活需要,让你在重温经典的同时,更能享受影院级画质,让记忆更清晰,让经典永留存。



老视频修复原理






1.着色模型DeOldify


图1 DeOldify 模型示意图

DeOldify 是用于着色和恢复旧图像及视频的深度学习项目,它采用自注意力机制的生成对抗网络。它采用了 NoGAN (一种新型的、高效的图像到图像)的生成对抗网络训练方法,可以更好地处理细节效果,渲染也更逼真,在图像的着色方面有着较好的效果。NoGAN 训练结合了 GAN 训练的优点(好看的色彩),同时消除了令人讨厌的副作用(如视频中的闪烁物体)。NoGAN 生成器是一个U-NET结构的网络,进行了预训练,使其利用常规损失函数,变得更强大、更快、更可靠。DeOldify 修复的老视频由孤立的图像生成,而不添加任何时间建模。该过程执行 30-60 分钟 “NoGAN” 训练的 GAN 部分,每次使用 1% 至 3% 的图像网络(ImageNet)数据。然后,与静止图像着色一样,在重建视频之前对各个帧进行“去旧化 ”。

以下是PaddleGAN中着色模型DeOldify模型的代码:
ppgan.apps.DeOldifyPredictor(output='output', weight_path=None, render_factor=32)

参数解释:
  • output_path (str,可选的):输出的文件夹路径,默认值:output。
  • weight_path (None,可选的):载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:None。
  • render_factor (int): 会将该参数乘以16后作为输入帧的resize的值,如果该值设置为32,则输入帧会resize到(32 * 16, 32 * 16)的尺寸再输入到网络中。




2.修复模型 EDVR


图2 EDVR 模型示意图

EDVR模型提出了一个新颖的还原框架——视频具有增强可变形卷积。这个模型有以下两个特点:第一,为了处理大动作而设计的一个金字塔,级联和可变形(PCD)对齐模块,使用可变形卷积以从粗到精的方式在特征级别完成对齐;第二,提出时空注意力机制(TSA)融合模块,在时间和空间上都融合了注意机制,用以增强复原的功能。

以下是PaddleGAN中修复模型EDVR模型的代码:
ppgan.apps.EDVRPredictor(output='output', weight_path=None)


参数:
  • output_path (str,可选的):输出的文件夹路径,默认值:output。
  • weight_path (None,可选的):载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:None。




3.插帧模型 DAIN


图3 DAIN 模型示意图

DAIN(深度感知视频帧插值)模型通过探索深度的信息来显式检测遮挡。并且开发了一个深度感知的流投影层来合成中间流。在视频补帧方面有较好的效果,它可以“脑补”缺失的帧并插入现有视频剪辑的关键帧之间。换句话说,DAIN首先分析并映射视频片段,然后插入在现有图像之间生成填充图像。

以下是PaddleGAN中插帧模型 DAIN的代码:
ppgan.apps.DAINPredictor(
                        output_path='output',
                        weight_path=None,
                        time_step=None,
                        use_gpu=True,
                        remove_duplicates=False)

参数:
  • output_path (str,可选的): 输出的文件夹路径,默认值:output.
  • weight_path (None,可选的):载入的权重路径,如果没有设置,则从云端下载默认的权重到本地。默认值:None。
  • time_step (int): 补帧的时间系数,如果设置为0.5,则原先为每秒30帧的视频,补帧后变为每秒60帧。
  • remove_duplicates (bool,可选的): 是否删除重复帧,默认值:False。



代码展示




  1. 安装PaddleGAN
!git clone https://gitee.com/paddlepaddle/PaddleGAN.git
%cd PaddleGAN/
!pip install -v -e .

  1. 环境配置
import cv2
import imageio
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
import warnings
warnings.filterwarnings("ignore")

  1. 导入视频
def display(driving, fps, size=(8, 6)):
    fig = plt.figure(figsize=size)

    ims = []
    for i in range(len(driving)):
        cols = []
        cols.append(driving[i])

        im = plt.imshow(np.concatenate(cols, axis=1), animated=True)
        plt.axis('off')
        ims.append([im])

    video = animation.ArtistAnimation(fig, ims, interval=1000.0/fps, repeat_delay=1000)

    plt.close()
    return video


video_path = '/home/aistudio/moderntimes.mp4'
video_frames = imageio.mimread(video_path, memtest=False)

cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
HTML(display(video_frames, fps).to_html5_video())

  1. 修复视频
%cd /home/aistudio/PaddleGAN/applications/
!python tools/video-enhance.py --input /home/aistudio/moderntimes.mp4 \
                               --process_order DAIN DeOldify EDVR \
                               --output output_dir

  1. 导出视频
output_video_path= '/PaddleGAN/applications/output_dir/EDVR/moderntimes_deoldify_out_edvr_out.mp4' 
video_frames = imageio.mimread(output_video_path, memtest=False)

cap = cv2.VideoCapture(output_video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
HTML(display(video_frames, fps).to_html5_video())



效果展示






1.《摩登时代》修复效果展示


AI Studio项目地址:
https://aistudio.baidu.com/aistudio/projectdetail/1839885

图4 《摩登时代》修复前

图5 《摩登时代》修复后



2.《昨日重现》修复效果展示


AI Studio项目地址:
https://aistudio.baidu.com/aistudio/projectdetail/1839881

B站:
https://www.bilibili.com/video/BV1cb4y1f7ss



小结




AI 修复老视频,相比专业视频修复,效果上仍然有所欠缺,比如有些场景颜色修复的不够自然、色彩饱和度不够理想、光线阴影偏暗等,但发展空间很大。以2019年国庆档《开国大典》为例,电影修复技术主要负责人周苏岳介绍,他们是由40人组成的修复团队奋战60天,才将12分12秒长的经典影片修复完成。专业视频修复师1天只能修复1秒,而AI 修复老视频,通过着色算法、修复算法、插帧算法,修复时长1分钟的视频(以《摩登时代》https://aistudio.baidu.com/aistudio/projectdetail/1839885为例)总用时在4小时以内。由此可见,使用 AI 修复视频可以大幅提高视频修复师的工作效率,视频修复师只需要在AI修复的视频基础上再调整光线和增加色彩饱和度,让场景色彩更加自然美观。


END




觉得不错,请点个在看

继续滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存