作者:林梅(中国科学技术大学) 汪喜林(南京大学)
缘于量子的叠加性质,相对于经典计算,量子计算一直被认为具有指数级的加速性。在量子计算里,每个比特不仅可以表示0或1,还可以表示成0和1分别乘以一个系数再叠加,随着比特数增加,信息的存储量和运行速度会呈指数增长,经典计算机将望尘莫及。量子霸权(quantum supremacy)一词是美国加州理工学院物理学家约翰·普瑞斯基尔提出的,它代表了大多数量子学家们的看法:当可以精确操纵的量子比特超过一定数目时,量子计算机在特定任务上的计算能力就能远超经典计算机。在量子计算的版图上,光子、电子、离子等微观粒子都被科学家用来尝试实现可能的计算方案。其中,线性光学量子计算是量子计算的方案之一。所谓线性光学量子计算,就是以光子作为载体,经过一个线性系统完成操作,输出计算结果。实现大规模比特的通用量子计算机目前看来还具有很苛刻的门槛,于是,科学家希望能够首先让量子计算在特定任务上表现出比经典计算机更卓越的能力。其中,一个叫做“玻色取样(boson sampling)”的问题吸引了科学家的关注。
所谓“玻色取样”问题,我们可以理解成一个量子世界的高尔顿板。高尔顿板问题是由英国生物统计学家高尔顿提出来的,这个问题的模型如图1所示,小球从最上方被扔下,每经过一个钉板,都有一半的可能从左边走,一半的可能从右边走,当有很多个小球从上往下随机掉落时,落在下面的格子里的小球数量分布上会呈现一定的统计规律,这个模型可以用来直观地认识中心极限定理。
图1 高尔顿钉板(图片来自淘宝搜索“道尔顿板”)
如果将“高尔顿钉板”发展出一个量子版本,即,由全同光子来代替小球,用分束器(当一束光通过分束器时会被分成两束强度较低的光,一束透射,另一束反射)来代替钉子,则这个游戏就变成“玻色取样”的量子模拟,如图2所示。更一般来讲,“玻色取样”是指,在n个全同玻色子经过一个干涉仪后,对n个玻色子的整个输出态空间进行采样的问题。采样过程和分布概率息息相关。例如,在图3中,3个全同光子输入一个7进7出的干涉仪,如果要对1、2、3,或者2、3、5输出口进行采样,目前理论认为至少需要计算一次对应口的分布概率。Aaronson 和Arkhipov研究发现[1],n光子“玻色取样”的分布概率正比于n维矩阵积和式(Permanent)的模方,从计算复杂度的角度来看,积和式的求解难度是“#P-hard”[2],当前经典最优算法需要O(n2n)步,随着光子数的增加求解步数呈指数上涨。对于这样一个经典计算#P-complete困难的问题,在中小规模下就可以打败超级计算机。因此,“玻色取样”这个问题被量子计算领域的科学家盯上了,准备拿它小试牛刀,挑战经典计算机。
图3 “玻色取样”基本概念:当n个全同玻色子经过一个干涉仪(线性变换器)之后,求特定分布的输出概率。例如,在一个7进7出干涉仪的1、2、3口同时输出3个全同玻色子,求3个光子在2、3、5口各输出一个光子的分布概率。[图片来源: Advanced Photonics 1, 034001 (2019)]
世界上有很多个课题组从实验上挑战玻色取样任务,根据实际需要,衍生出了各种玻色取样变体。Advanced Photonics 发表的综述论文着重介绍了散粒玻色取样和高斯玻色取样。散粒玻色取样针对自发参量下转换(SPDC)光源概率性和低抽运强度的缺点,将k (k > n)个单光子SPDC源连接到线性干涉仪的不同输入端口,SPDC产生的一对光子分别用于预报和探测。当k远大于n时,相对于固定版本的玻色取样会产生指数级别的加速;而高斯玻色取样由Hamilton等人提出,它使用所有处于压缩态的光子,且允许使用更高的抽运功率,使得其同样在事件发生率上具有指数优势。
玻色取样实验的完成,有赖于三个基本模块:单光子源、线性干涉仪和单光子探测器。该综述列举了迄今为止主要的玻色取样实验所采取的技术方案,总结了各个实验小组在三大模块上的主要特点。在光源方面,主要的方案有:基于单个非线性晶体(NLC)的单光子源、集成片上源、半导体量子点。在干涉仪方面,主要的方案有:由定向耦合器网络组成的多端口波导电路、微光学干涉仪、若干波导或光纤芯连续耦合设备、利用光纤回路的时间编码线路。在单光子探测方面,主要的方案有:雪崩光电二极管、超导纳米线探测器。但是,受限于单光子源的品质和干涉网络的性能,玻色取样的高效率大规模实现一直是个难题,世界上多个课题组在改善光源的品质上做了大量的尝试。作者指出,高质量的光子源是实现可扩展玻色取样的关键,而目前使用的参数下转换、自发四波混频和固态量子点源等方案都有各自的优势和亟需解决的技术难题。
对于玻色取样任务来说,验证其是否从正确的分布中采样是至关重要的。目前而言,完全验证还难以做到,因为对于具有量子优势的实验来说,经典模拟的计算量将是指数级增长的,无法对大规模的实验进行验证。但是已有一些初步验证的方法被提出,来排除实验中可能出现的“错误”分布,如均匀分布,可分辨粒子的分布,平均场分布等,给玻色取样实验提供直接证据,说明实验的正确性。目前主要的方法有Baysian method, likelihood ratio test, statistical benchmark, pattern recognition等。总之,从原始理论的提出,玻色取样的理论和实验都取得了可喜的进展。技术的进步,诸如高品质的量子点光源和单光子探测器等,都为进一步的探索开辟了道路。[1] S. Aaronson and A. Arkhipov, “The computational complexity of linear optics,” in Proc. 43rd Annu. ACM Symp. Theory of Comput., A. Press, Ed., pp. 333–342 (2011).
[2] L. Valiant, “The complexity of computing the permanent,” Theor. Comput. Sci. 8(2), 189–201 (1979).
推荐阅读
Advanced Photonics | 多重散射下的全息粒子定位
Advanced Photonics | 混合介电声子系统中的高Q谐振态
Advanced Photonics | 超表面材料让三维成像技术更轻、更快、更小
如需转载,请直接留言。
商务合作:高先生 13585639202( 微信手机同号)
免责声明
本文注明来源为其他媒体或网站的文/图等稿件均为转载,如涉及版权等问题,请作者在20个工作日之内来电或来函联系,我们将协调给予处理(按照法规支付稿费或删除)。
最终解释权归《中国激光》杂志社所有。