30张图讲解HTTP,再不懂请来打我!
The following article is from 小林coding Author 小林coding
在面试过程中,HTTP 被提问的概率还是比较高的。我搜集了 5 大类 HTTP 面试常问的题目,同时这 5 大类题跟 HTTP 的发展和演变关联性是比较大的。
图片来自 Pexels
下面我将通过问答+图解由浅入深帮助大家进一步的学习和理解 HTTP 协议:
HTTP 基本概念
Get 与 Post
HTTP 特性
HTTPS 与 HTTP
HTTP/1.1、HTTP/2、HTTP/3 演变
HTTP 基本概念
HTTP 是什么?描述一下,HTTP 是超文本传输协议,也就是HyperText Transfer Protocol。
能否详细解释「超文本传输协议」?HTTP 的名字「超文本协议传输」,它可以拆成三个部分:
协议
传输
超文本
协议
刚毕业时会签一个「三方协议」。
找房子时会签一个「租房协议」。
「协」字,代表的意思是必须有两个以上的参与者。例如三方协议里的参与者有三个:你、公司、学校三个;租房协议里的参与者有两个:你和房东。
「仪」字,代表的意思是对参与者的一种行为约定和规范。例如三方协议里规定试用期期限、毁约金等;租房协议里规定租期期限、每月租金金额、违约如何处理等。
传输
我们在上网冲浪时,浏览器是请求方 A ,百度网站就是应答方 B。双方约定用 HTTP 协议来通信,于是浏览器把请求数据发送给网站,网站再把一些数据返回给浏览器,最后由浏览器渲染在屏幕,就可以看到图片、视频了。
数据虽然是在 A 和 B 之间传输,但允许中间有中转或接力。就好像第一排的同学想穿递纸条给最后一排的同学,那么传递的过程中就需要经过好多个同学(中间人),这样的传输方式就从「A < --- > B」,变成了「A <-> N <-> M <-> B」。
超文本
这种说法是不正确的。因为也可以是「服务器< -- >服务器」,所以采用两点之间的描述会更准确。HTTP 常见的状态码,有哪些?
客户端发送请求时,用来指定服务器的域名。
Host: www.A.com
服务器在返回数据时,会有 Content-Length 字段,表明本次回应的数据长度。
Content-Length: 1000
Connection 字段最常用于客户端要求服务器使用 TCP 持久连接,以便其他请求复用。
HTTP/1.1 版本的默认连接都是持久连接,但为了兼容老版本的 HTTP,需要指定 Connection 首部字段的值为 Keep-Alive。
Connection: keep-alive
Content-Type 字段用于服务器回应时,告诉客户端,本次数据是什么格式。
Content-Type: text/html; charset=utf-8
客户端请求的时候,可以使用 Accept 字段声明自己可以接受哪些数据格式。
Accept: */*
Content-Encoding 字段说明数据的压缩方法。表示服务器返回的数据使用了什么压缩格式。
Content-Encoding: gzip
客户端在请求时,用 Accept-Encoding 字段说明自己可以接受哪些压缩方法。
Accept-Encoding: gzip, deflate
GET 与 POST
比如,你打开我的文章,浏览器就会发送 GET 请求给服务器,服务器就会返回文章的所有文字及资源。
比如,你在我文章底部,敲入了留言后点击「提交」(暗示你们留言),浏览器就会执行一次 POST 请求,把你的留言文字放进了报文 body 里,然后拼接好 POST 请求头,通过 TCP 协议发送给服务器。
在 HTTP 协议里,所谓的「安全」是指请求方法不会「破坏」服务器上的资源。
所谓的「幂等」,意思是多次执行相同的操作,结果都是「相同」的。
HTTP 特性
相当于,在客户端第一次请求后,服务器会下发一个装有客户信息的「小贴纸」,后续客户端请求服务器的时候,带上「小贴纸」,服务器就能认得了了。
但是这正是这样,HTTP 的所有信息都暴露在了光天化日下,相当于信息裸奔。在传输的漫长的过程中,信息的内容都毫无隐私可言,很容易就能被窃取,如果里面有你的账号密码信息,那你号没了。
通信使用明文(不加密),内容可能会被窃听。比如,账号信息容易泄漏,那你号没了。
不验证通信方的身份,因此有可能遭遇伪装。比如,访问假的淘宝、拼多多,那你钱没了。
无法证明报文的完整性,所以有可能已遭篡改。比如,网页上植入垃圾广告,视觉污染,眼没了。
持久连接的特点是,只要任意一端没有明确提出断开连接,则保持 TCP 连接状态。
举例来说,客户端需要请求两个资源。以前的做法是,在同一个TCP连接里面,先发送 A 请求,然后等待服务器做出回应,收到后再发出 B 请求。管道机制则是允许浏览器同时发出 A 请求和 B 请求。
因为当顺序发送的请求序列中的一个请求因为某种原因被阻塞时,在后面排队的所有请求也一同被阻塞了,会招致客户端一直请求不到数据,这也就是「队头阻塞」。好比上班的路上塞车。
HTTP 与 HTTPS
HTTP 是超文本传输协议,信息是明文传输,存在安全风险的问题。HTTPS 则解决 HTTP 不安全的缺陷,在 TCP 和 HTTP 网络层之间加入了 SSL/TLS 安全协议,使得报文能够加密传输。
HTTP 连接建立相对简单, TCP 三次握手之后便可进行 HTTP 的报文传输。而 HTTPS 在 TCP 三次握手之后,还需进行 SSL/TLS 的握手过程,才可进入加密报文传输。
HTTP 的端口号是 80,HTTPS 的端口号是 443。
HTTPS 协议需要向 CA(证书权威机构)申请数字证书,来保证服务器的身份是可信的。
窃听风险,比如通信链路上可以获取通信内容,用户号容易没。
篡改风险,比如强制入垃圾广告,视觉污染,用户眼容易瞎。
冒充风险,比如冒充淘宝网站,用户钱容易没。
HTTPS 在 HTTP 与 TCP 层之间加入了 SSL/TLS 协议。
信息加密:交互信息无法被窃取,但你的号会因为「自身忘记」账号而没。
校验机制:无法篡改通信内容,篡改了就不能正常显示,但百度「竞价排名」依然可以搜索垃圾广告。
身份证书:证明淘宝是真的淘宝网,但你的钱还是会因为「剁手」而没。
混合加密的方式实现信息的机密性,解决了窃听的风险。
摘要算法的方式来实现完整性,它能够为数据生成独一无二的「指纹」,指纹用于校验数据的完整性,解决了篡改的风险。
将服务器公钥放入到数字证书中,解决了冒充的风险。
通过混合加密的方式可以保证信息的机密性,解决了窃听的风险。
在通信建立前采用非对称加密的方式交换「会话秘钥」,后续就不再使用非对称加密。
在通信过程中全部使用对称加密的「会话秘钥」的方式加密明文数据。
对称加密只使用一个密钥,运算速度快,密钥必须保密,无法做到安全的密钥交换。
非对称加密使用两个密钥:公钥和私钥,公钥可以任意分发而私钥保密,解决了密钥交换问题但速度慢。
摘要算法用来实现完整性,能够为数据生成独一无二的「指纹」,用于校验数据的完整性,解决了篡改的风险。
这就存在些问题,如何保证公钥不被篡改和信任度?所以这里就需要借助第三方权威机构 CA (数字证书认证机构),将服务器公钥放在数字证书(由数字证书认证机构颁发)中,只要证书是可信的,公钥就是可信的。
客户端向服务器索要并验证服务器的公钥。
双方协商生产「会话秘钥」。
双方采用「会话秘钥」进行加密通信。
前两步也就是 SSL/TLS 的建立过程,也就是握手阶段。SSL/TLS 的「握手阶段」涉及四次通信,可见下图:
客户端支持的 SSL/TLS 协议版本,如 TLS 1.2 版本。
客户端生产的随机数(Client Random),后面用于生产「会话秘钥」。
客户端支持的密码套件列表,如 RSA 加密算法。
确认 SSL/ TLS 协议版本,如果浏览器不支持,则关闭加密通信。
服务器生产的随机数(Server Random),后面用于生产「会话秘钥」。
确认的密码套件列表,如 RSA 加密算法。
服务器的数字证书。
一个随机数(pre-master key)。该随机数会被服务器公钥加密。
加密通信算法改变通知,表示随后的信息都将用「会话秘钥」加密通信。
客户端握手结束通知,表示客户端的握手阶段已经结束。这一项同时把之前所有内容的发生的数据做个摘要,用来供服务端校验。
加密通信算法改变通知,表示随后的信息都将用「会话秘钥」加密通信。
服务器握手结束通知,表示服务器的握手阶段已经结束。这一项同时把之前所有内容的发生的数据做个摘要,用来供客户端校验。
HTTP/1.1、HTTP/2、HTTP/3 演变
使用 TCP 长连接的方式改善了 HTTP/1.0 短连接造成的性能开销。
支持管道(pipeline)网络传输,只要第一个请求发出去了,不必等其回来,就可以发第二个请求出去,可以减少整体的响应时间。
请求/响应头部(Header)未经压缩就发送,首部信息越多延迟越大。只能压缩 Body 的部分。
发送冗长的首部。每次互相发送相同的首部造成的浪费较多。
服务器是按请求的顺序响应的,如果服务器响应慢,会招致客户端一直请求不到数据,也就是队头阻塞。
没有请求优先级控制。
请求只能从客户端开始,服务器只能被动响应。
头信息和数据体都是二进制,并且统称为帧(frame):头信息帧和数据帧。
客户端还可以指定数据流的优先级。优先级高的请求,服务器就先响应该请求。
举例来说,在一个 TCP 连接里,服务器收到了客户端 A 和 B 的两个请求,如果发现 A 处理过程非常耗时,于是就回应 A 请求已经处理好的部分,接着回应 B 请求,完成后,再回应 A 请求剩下的部分。
HTTP/1.1 中的管道( pipeline)传输中如果有一个请求阻塞了,那么队列后请求也统统被阻塞住了
HTTP/2 多请求复用一个TCP连接,一旦发生丢包,就会阻塞住所有的 HTTP 请求。
这都是基于 TCP 传输层的问题,所以 HTTP/3 把 HTTP 下层的 TCP 协议改成了 UDP!
QUIC 有自己的一套机制可以保证传输的可靠性的。当某个流发生丢包时,只会阻塞这个流,其他流不会受到影响。
TL3 升级成了最新的 1.3 版本,头部压缩算法也升级成了 QPack。
HTTPS 要建立一个连接,要花费 6 次交互,先是建立三次握手,然后是 TLS/1.3 的三次握手。QUIC 直接把以往的 TCP 和 TLS/1.3 的 6 次交互合并成了 3 次,减少了交互次数。
作者:小林 coding
编辑:陶家龙
出处:转载自微信公众号小林 coding
精彩文章推荐: