查看原文
其他

GitHub 热门:动漫生成器让照片秒变手绘日漫风,实测好用

(给程序员的那些事加星标

转自:机器之心

▲ 机器之心根据真实店铺照片生成的效果图,一度以为,这就是某个日漫番剧的截图
随手拍张照片,顺势转换为宫崎骏、新海诚等日漫大师的手绘风格作品,这个专门生成动漫图像的 GAN,实测很好用。
尽管最近 2019 年的图灵奖颁给了计算机图形学、颁给了皮克斯 3D 动画,但很多人可能认为二维动漫更有意思一些。像宫崎骏、新海诚这些大师手绘下的动漫,才有了灵魂,张张都能成为壁纸,而整个日漫也以二维为核心。

如果有模型能将真实画面转化为日漫风格的手绘画面,那一定非常炫酷。最近机器之心发现确实有这些模型,从 CartoonGAN 到 AnimeGAN 都能生成非常有意思的图像。


这里有一个 TensorFlow 新项目,它实现了 AnimeGAN,并提供了预训练模型。也就是说,我们下载后可以直接试试生成效果。作为日漫风格的爱好者,我们很快就试用了一下新项目。

项目地址:https://github.com/TachibanaYoshino/AnimeGAN

虽然原项目给出的最佳示例很多都是街景,但我们发现各种场景也都还行,如下是我们试用的原图与生成效果。看看第一张樱花道生成效果,忽然有一种《千与千寻》的感觉。


如果只针对人物,转换效果也是非常不错的。我们尝试将新垣结衣的照片输入 AnimeGAN 模型,然后就有如下这种神奇的画风,感觉直接用到动漫里也没什么问题了。


在原 GitHub 项目中,作者还给了非常多的示例,上面只是机器之心试用的结果,你也可以来用一用。

AnimeGAN

整个项目实现的是论文「AnimeGAN: a novel lightweight GAN for photo animation」中所提方法,作者在论文中分别将 AnimeGAN 与 CartoonGAN、ComixGAN 进行对比。


从图中可以看到,AnimeGAN 在细节方面的表现要优于以上两种方法,色彩相对而言更加自然,涂抹感也没有那么强烈。最明显的是第二行的效果图,使用 AnimeGAN 生成的漫画更加接近宫崎骏的画风。

方法简介

对于这个项目的 AnimeGAN,如下所示为 AnimeGAN 所采用的生成器网络与判别器网络。看起来模型整体是比较常规地一个卷积神经网络,但它会采用实例归一化以及新型的 LReLU 激活函数。


除了架构细节上的更新外,作者还提出了以下三个新的损失函数:

  • 灰度风格(grayscale style)loss

  • 灰度对抗(grayscale adversarial)loss

  • 色彩重构(color reconstruction)loss


这些损失函数能够让生成图片的风格更加接近于真实的漫画风格。

下表比较了 ACartoonGAN 与 AnimeGAN 的模型大小与推理速度。可以明显看出,AnimeGAN 是个相对轻量级的 GAN,具有更少的参数量以及更快的推理速度。


总体来说,新提出来的 AnimeGAN 是一种轻量级的生成对抗模型,它采用了较少的模型参数,以及引入格拉姆矩阵(Gram matrix)来加强照片的风格。研究者的方法需要采用一系列真实图片与一系列动漫图片做训练,且这些图片并不需要成对匹配,这就表明训练数据非常容易获得。

项目实测

我们在 Ubuntu 18.04 下对本项目进行了测试,相关依赖环境如下:

  • python 3.6.8

  • tensorflow-gpu 1.8

  • opencv

  • tqdm

  • numpy

  • glob

  • argparse


这些依赖项可以说都是 CV 中常用的扩展库,我们就不用费尽心思去解决各种依赖环境冲突的问题了,这里给个好评。

以下是本项目的训练及测试详细流程。我们首先将 AnimeGAN 项目克隆到本地,在 Jupyter notebook 中输入:

!git clone https://github.com/TachibanaYoshino/AnimeGAN

 
将工作目录切换到 AnimeGAN:

import os
os.chdir('AnimeGAN')
print(os.getcwd())

接下来下载项目作者提供的预训练模型,使用 vim download_staffs.sh 创建一个 Shell 文件,输入如下命令:

URL=https://github.com/TachibanaYoshino/AnimeGAN/releases/download/Haoyao-style_V1.0/Haoyao-style.zip
ZIP_FILE=./checkpoint/Haoyao-style.zip
TARGET_DIR=./checkpoint/saved_model

mkdir -p ./checkpoint
wget -N $URL -O $ZIP_FILE
mkdir -p $TARGET_DIR
unzip $ZIP_FILE -d $TARGET_DIR
rm $ZIP_FILE

DatesetURL=https://github.com/TachibanaYoshino/AnimeGAN/releases/download/dataset-1/dataset.zip
ZIP_FILE=./dataset.zip
TARGET_DIR=./dataset

rm -rf dataset
wget -N $DatesetURL -O $ZIP_FILE
unzip $ZIP_FILE -d $TARGET_DIR
rm $ZIP_FILE

VGG_FILE=./vgg19_weight/vgg19.npy
wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1U5HCRpZWAbDVLipNoF8t0ZHpwCRX7kdF' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1U5HCRpZWAbDVLipNoF8t0ZHpwCRX7kdF" -O $VGG_FILE && rm -rf /tmp/cookies.txt

保存后退出,以上命令会将预训练的模型、vgg19 权重以及训练数据集下载并保存到其对应目录下。在 notebook 中运行:

!bash download_staffs.sh


至此即完成所有准备工作,运行如下代码就可以对模型进行训练了:

!python main.py --phase train --dataset Hayao --epoch 101 --init_epoch 1

AnimeGAN 的训练过程如下图所示:


当进行测试时,我们需要将用于测试的图片保存到 dataset/test/real 目录下,并运行如下代码:

!python test.py --checkpoint_dir checkpoint/saved_model --test_dir dataset/test/real --style_name H


当看到以上输出说明程序已经成功运行完成,生成结果保存在 results 文件夹下。可以看到,在 P100 GPU 上生成一幅图片需要大约 2.3 秒左右。

整体而言,运行速度还是比较快的,这么好玩的项目,你不来试下吗?



推荐阅读  点击标题可跳转
GitHub 热门:Python 算法大全,Star 超过 2 万
GitHub 热门:各大网站的 Python 爬虫登录汇总
GitHub 热门:微软实现的 C++ 标准库


关注「程序员的那些事」加星标,不错过圈内事

圈内事,我在看❤️

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存