查看原文
其他

急性髓系白血病几种基因突变与预后的关系(上)

刘加军 医脉通血液科 2022-09-21

作者:刘加军,中山大学附属第三医院血液科

本文为作者授权医脉通发布,未经授权请勿转载。

急性髓系白血病(AML)是造血干细胞恶性克隆性疾病。在AML的诊断、治疗以及判断预后的过程中,基因异常是一项重要指标。随着基因检测技术的不断进步,越来越多与AML发生相关的基因被人们发现,并且这些基因在指导预后方面有重要意义。因此本文参照2017年欧洲白血病网(ELN)根据核型及基因异常建立的AML危险度分层体系,重点介绍对有明确证据与AML预后相关的基因及其与预后的关系。


1RUNX1-RUNX1T1

8号染色体和21号染色体易位[t(8;21)(q22;q22)]是RUNX1/RUNX1T1融合基因产生的基础。RUNX1/RUNX1T1融合基因与CBFB-MYH11融合基因导致的AML病因、临床特征相似,被合称为CBF-AML[1]。然而两者因对预后的影响有所不同,因此分开论述。


核心结合因子(CBF)在造血干细胞的产生以及造血过程中起到重要作用,RUNX1编码CBF中的ɑ亚基,该亚基负责与DNA直接结合。因此RUNX1/RUNX1T1融合基因的产生会破坏CBF的功能,导致髓系分化阻断并最终导致白血病。


依照国外所做回顾性研究,RUNX1/RUNX1T1阳性AML的预后较好,其完全缓解(CR)率可以达到87%-98%,5年无病生存(DFS)率为45%-52%,5年总生存(OS)率为45%-69%。合并有其他突变基因的AML则预后较差。如合并KIT基因突变的AML通常预后不良,且KIT基因突变在CBF-AML中发生率较高(17%-38%)。就目前的研究而言,合并KIT基因突变会降低RUNX1/RUNX1T1阳性AML患者的DFS,但对OS影响尚有争议。至于合并其他突变基因如FLT3等对预后的影响尚不能完全确定[2]


2CBFB-MYH11

CBFB-MYH11融合基因是染色体重排的结果,较常见inv(16)(p13.1q22),较少见的类型为t(16;16)(p13.1;q22)。该融合基因与M4型AML发生相关,其特征为存在骨髓单核细胞母细胞和非典型嗜酸性粒细胞。小鼠模型表明,CBFB-MYH11融合基因可以破坏核心结合因子(CBF)的功能,导致髓系分化阻断并最终导致白血病。虽然单纯CBFB-MYH11的表达不足以导致白血病的发生,但CBFB-MYH11和其他突变的结合可以特异性地导致髓系白血病的发展[1]


单纯的CBFB-MYH11融合基因导致的白血病预后较好,有研究显示CBFB-MYH11阳性AML的CR率可以达到85%-93%,3年DFS率为48%-58%,5年OS率为50%-61%。然而,合并有其他突变基因的AML患者则预后较差。如合并KIT基因突变的AML通常预后不良,而KIT基因突变在CBF-AML中发生率较高(17%-38%)。就目前的研究而言,相较于RUNX1/RUNX1T1阳性AML,合并KIT基因突变会降低CBFB-MYH11阳性AML的DFS,但对OS影响不大。至于合并其他突变基因如FLT3等对预后的影响尚不能完全确定[2]


3NPM1

核磷蛋白1(nucleophosmin 1,NPM1)属于核磷蛋白家族,是一种广泛表达的磷蛋白,能在核仁、核质和胞质之间不断穿梭。该基因位于5q35,包含12个外显子,编码3种核磷蛋白亚型。NPM1主要有4种功能:(1)参与核糖体生物合成;(2)维持基因的稳定性;(3)依赖p53的应激反应;(4)通过ARF-p53的相互作用从而调控生长抑制途径[3]


NPM1基因突变与AML发病的机制尚不清楚。异常的细胞质脱位是所有NPM1突变体的共同特征,并可能在白血病发生中起到非常重要的作用。然而,其导致白血病发生的确切机制尚未阐明。


NPM1基因突变对预后的影响与共突变基因FLT3-ITD密切相关。根据2017年ELN指南,NPM1基因突变不伴有或伴有FLT3-ITD低表达(低等位基因比[<0.5];高等位基因比[>0.5];FLT3-ITD等位基因比的半定量评估[使用DNA片段分析]为曲线下面积比[AUC]“FLT3-ITD”除以AUC“FLT3-野生型”)。指南中指出,NPM1突变的AML和FLT3-ITD低等位基因比可能预后较好,患者不应常规进行异基因造血细胞移植[4]


NPM1基因突变未合并FLT3-ITD基因突变者预后较好,根据ELN危险度分级及国外所做回顾性研究,NPM1基因突变未合并FLT3-ITD及NPM1基因突变合并FLT3-ITD低表达者预后较好,NPM1基因突变合并FLT3-ITD高表达者预后较差。NPM1基因突变未合并FLT3-ITD及NPM1基因突变合并FLT3-ITD低表达者的OS、无事件生存期(EFS),累积复发率(CIR),累积死亡率(CID)均优于NPM1基因突变合并FLT3-ITD高表达者[5]


4CEBPA

CCAAT增强子结合蛋白α基因(CCAAT/en-hancer binding protein α,CEBPA)属亮氨拉链转录因子家族,位于染色体19q13。CEBPA突变会上调造血干细胞归巢和粒细胞分化的基因,下调参与调控造血细胞增殖的信号分子和转录因子的基因,阻碍DNA从G1期向S期演变,且诱导晚期造血细胞成熟,导致白血病发生。


CEBPA基因突变发生率在成人AML患者中占5%-14%。突变可分为双突变和单突变,N端移码突变和C端框内突变同时存在即双突变较多见,而单杂合子突变不常见。国内外的多项研究表明双突变的预后良好,无论是CR率及维持化疗后的总CR率CEBPA双突变组均明显高于CEBPA单体突变组及CEBPA阴性组,且中位OS(60个月)和中位EFS(53个月)较其余两组均明显延长[6]。WHO及ELN关于AML的指南中均将CEBPA基因双突变视为预后良好的标志。


5MLLT3-KMT2A

MLLT3-KMT2A融合基因是t(9;11)(p21.3;q23.3)染色体易位形成的,其中赖氨酸甲基转移酶2A即KMT2A(旧称MLL)基因突变在AML中较常见,发生率约为10%[7],其中KMT2A与MLLT3(也被称为AF9或LTG9)基因融合是其中最常见的类型。因相较其他类型KMT2A融合基因的AML,MLLT3-KMT2A融合基因阳性的AML预后差异明显,因此将其单独列出[8,9]


之前的研究显示MLLT3-KMT2A融合基因与单核细胞表型的AML发生有关,且其具有病程进展快、复发率高以及生存期短的特点[10,11]。ELN 2017年指南中将MLLT3-KMT2A融合基因阳性的AML列为中间危险度分组。


前人的研究显示MLLT3-KMT2A融合基因阳性的AML的中位OS为11.3个月,无复发生存期约为9.5个月。同时发现有合并KRAS或NRAS突变(36%)病例较多,而合并FLT3突变的病例较少(8%),无论合并RAS还是FLT3突变,都会降低患者的OS。该结论表明Ras通路的激活可能与在肿瘤发生中与MLLT3-KMT2A起到互补作用,然而这一结论仍有待证实[12]


6DEK-NUP214

DEK-NUP214融合基因由t(6;9)(p22.3;q34.1)引起,与大概1%的AML发生相关[13]Carl Sandén等人的研究发现DEK-NUP214基因主要影响细胞增殖过程,通过上调雷帕霉素复合物1(mTORC1)的活性来促进细胞增殖,使用雷帕霉素受体抑制剂治疗对抑制此类白血病细胞增殖有一定效果[14]


DEK-NUP214融合基因阳性的AML通常预后不佳,Slovak所做队列研究显示该类型AML(包括儿童及成人)CR率仅有65%,中位OS仅有13.5个月,中位DFS仅有9.9个月。


因该种类型的AML对化疗的反应较差,因此异基因造血干细胞移植为其可选的治疗手段。根据K Ishiyama等人所做的配对研究显示,与相同条件下(包括性别、年龄、是否达到CR、预处理方案、献血者、HLA不匹配数等)同样经过HSCT治疗的正常核型AML相比,EK-NUP214融合基因阳性的AML在OS、DFS等方面无显著差异,5年OS率为45%左右,5年DFS率为40%左右,5年总复发率为42%左右。然而因为纳入研究的人数不足,该结论尚有待证实[15]


7KMT2A

KMT2A基因(也称为MLL基因),位于11q23,编码组蛋白H3赖氨酸4甲基转移酶。KMT2A基因重排发生于大约3%-7%的成人初发AML[16]


KMT2A编码一种组蛋白甲基转移酶,它在胚胎发育和造血过程中对基因表达的维持有重大作用。KMT2A基因易位会产生嵌合的KMT2A融合蛋白,直接与DNA结合并上调基因转录,导致下游KMT2A靶点的异常表达,包括HOX基因等,从而导致AML的发生[16]


Y Chen等人的研究显示,KMT2A基因突变的AML的总CR率为68%,中位OS为8.5个月。非MLLT3-KMT2A组的KMT2A基因突变的AML患者5年生存率仅为0-18%,5年EFS率仅为0-6%。CR后接受异基因造血干细胞移植的患者较仅接受化疗的患者OS及无复发生存期(RFS)均较好[17]。Marius Bill等人的研究同样显示,非MLLT3-KMT2A组的KMT2A基因突变的AML无论CR率、3年DFS率及中位OS均较差[18]



To be continued
完待续


关于AML几种基因突变与预后的关系,今天就先介绍到这里。在下期《急性髓系白血病几种基因突变与预后的关系(下)》中,精彩继续,敬请期待!


参考文献:

[1]OPATZ S, BAMOPOULOS S A, METZELER K H, et al. 2020. The clinical mutatome of core binding factor leukemia. Leukemia [J], 34: 1553-1562.

[2]GAIDZIK V I, BULLINGER L, SCHLENK R F, et al. 2011. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol [J], 29: 1364-1372.

[3]E M Heath,S M Chan,M D Minden,T Murphy,L I Shlush,A D Schimmer. Biological and clinical consequences of NPM1 mutations in AML[J]. Leukemia,2017,31(20):

[4]DUPLOYEZ N, WILLEKENS C, MARCEAU-RENAUT A, et al. 2015. Prognosis and monitoring of core-binding factor acute myeloid leukemia: current and emerging factors. Expert Rev Hematol [J], 8: 43-56.

[5]DOHNER H, ESTEY E, GRIMWADE D, et al. 2017. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood [J], 129: 424-447.

[6]张梦娜,杨艳丽,耿英华,李骏,冯会欣.CEBPA基因突变与急性髓系白血病临床特点及预后关系[J].临床血液学杂志,2021,34(09):659-663.

[7] Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-2405.[J]. Blood,2016,128(3):

[8] Diagnostic Tool for the Identification of MLL Rearrangements Including Unknown Partner Genes[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(2):

[9]C Meyer,E Kowarz,J Hofmann,A Renneville,J Zuna,J Trka,R Ben Abdelali,E Macintyre,E De Braekeleer,M De Braekeleer,E Delabesse,M P de Oliveira,H Cavé, et al New insights to the MLL recombinome of acute leukemias[J]. Leukemia,2009,23(8):

[10]De Braekeleer Marc,Morel Frédéric,Le Bris Marie-Josée,Herry Angèle,Douet-Guilbert Nathalie. The MLL gene and translocations involving chromosomal band 11q23 in acute leukemia.[J]. Anticancer research,2005,25(3B):

[11]Schoch Claudia,Schnittger Susanne,Klaus Mirjam,Kern Wolfgang,Hiddemann Wolfgang,Haferlach Torsten. AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases[J]. Blood,2003,102(7):

[12]HEATH E M, CHAN S M, MINDEN M D, et al. 2017. Biological and clinical consequences of NPM1 mutations in AML. Leukemia [J], 31: 798-807.

[13]CHANDRA P, LUTHRA R, ZUO Z, et al. 2010. Acute myeloid leukemia with t(9;11)(p21-22;q23): common properties of dysregulated ras pathway signaling and genomic progression characterize de novo and therapy-related cases. Am J Clin Pathol [J], 133: 686-693.

[14]Carl Sanden, Malin Ageberg, Jessica Petersson, Andreas Lennartsson, Urban Gullberg. FORCED EXPRESSION OF THE DEK-NUP214 FUSION PROTEIN PROMOTES PROLIFERATION DEPENDENT ON UPREGULATION OF MTOR[J]. Inventi Impact Cancer,2014,2014:

[15]Díaz-Beyá Marina,Labopin Myriam,Maertens Johan,Alijurf Mahmoud,Passweg Jakob,Dietrich Beelen,Schouten Harry,Socié Gerard,Schaap Nicolaas,Schwerdtfeger Rainer,Volin Liisa,Michallet Mauricette,Polge Emmanuelle,Sierra Jorge,Mohty Mohamad,Esteve Jordi,Nagler Arnon. Allogeneic stem cell transplantation in AML with t(6;9)(p23;q34);DEK-NUP214 shows a favourable outcome when performed in first complete remission.[J]. British journal of haematology,2020,189(5):

[16]BILL M, MROZEK K, KOHLSCHMIDT J, et al. 2020. Mutational landscape and clinical outcome of patients with de novo acute myeloid leukemia and rearrangements involving 11q23/KMT2A. Proc Natl Acad Sci U S A [J], 117: 26340-26346.

[17]Y Chen,H Kantarjian,S Pierce,S Faderl,S O'Brien,W Qiao,L Abruzzo,M de Lima,P Kebriaei,E Jabbour,N Daver,T Kadia,Z Estrov,G Garcia-Manero,J Cortes,F Ravandi. Prognostic significance of 11q23 aberrations in adult acute myeloid leukemia and the role of allogeneic stem cell transplantation[J]. Leukemia,2013,27(4):

[18]ASADA S, FUJINO T, GOYAMA S, et al. 2019. The role of ASXL1 in hematopoiesis and myeloid malignancies. Cell Mol Life Sci [J], 76: 2511-2523.

[19]Arber Daniel A.,Orazi Attilio,Hasserjian Robert,Thiele Jürgen,Borowitz Michael J.,Le Beau Michelle M.,Bloomfield Clara D.,Cazzola Mario,Vardiman James W.. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood,2016,127(20):

[20]LAZAREVIC V L, LABOPIN M, DEPEI W, et al. 2018. Relatively favorable outcome after allogeneic stem cell transplantation for BCR-ABL1-positive AML: A survey from the acute leukemia working party of the European Society for blood and marrow transplantation (EBMT). Am J Hematol [J], 93: 31-39.

[21]Marta Sitges,Blanca Boluda,Ana Garrido,Mireia Morgades,Isabel et al. Acute myeloid leukemia with inv(3)(q21.3q26.2)/t(3;3)(q21.3;q26.2): Study of 61 patients treated with intensive protocols[J]. European Journal of Haematology,2020,105(2):

[22]Hiromi Yamazaki,Mikiko Suzuki,Akihito Otsuki,Ritsuko Shimizu,Emery H. Bresnick,James Douglas Engel,Masayuki Yamamoto. A Remote GATA2 Hematopoietic Enhancer Drives Leukemogenesis in inv(3)(q21;q26) by Activating EVI1 Expression[J]. Cancer Cell,2014,25(4):

[23]Lugthart Sanne,Gröschel Stefan,Beverloo H Berna,Kayser Sabine, et al. Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia.[J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology,2010,28(24):

[24]Tang Jih Luh,Hou Hsin An,Chen Chien Yuan,Liu Chieh Yu et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations[J]. Blood,2009,114(26):

[25]Gaidzik Verena I,Bullinger Lars,Schlenk Richard F, et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group.[J]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology,2011,29(10):

[26]Chou Wen Chien,Huang Huai Hsuan,Hou Hsin An,Chen Chien Yuan,Tang Jih Luh,Yao Ming,Tsay Woei,Ko Bor Sheng,Wu Shang Ju,Huang Shang Yi,Hsu Szu Chun,Chen Yao Chang,Huang Yen Ning,Chang Yi Chang,Lee Fen Yu,Liu Min Chih,Liu Chia Wen,Tseng Mei Hsuan,Tien Hwei Fang. Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations[J]. Blood,2010,116(20):

[27]Shuhei Asada,Takeshi Fujino,Susumu Goyama,Toshio Kitamura. The role of ASXL1 in hematopoiesis and myeloid malignancies[J]. Cellular and Molecular Life Sciences,2019,76(13):

[28]Lin Yun,Wang Yaping,Zheng Yi,Wang Zechuan,Wang Yanni,Wang Shaoyuan. Clinical characteristics and prognostic study of adult acute myeloid leukemia patients with ASXL1 mutations.[J]. Hematology (Amsterdam, Netherlands),2020,25(1):

[29]Magali Olivier,Monica Hollstein,Pierre Hainaut. TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use[J]. Cold Spring Harbor Laboratory Press,2010,2(1):

[30]Rücker Frank G.,Schlenk Richard F.,Bullinger Lars,Kayser Sabine,Teleanu Veronica,Kett Helena,Habdank Marianne,Kugler Carla Maria,Holzmann Karlheinz,Gaidzik Verena I.,Paschka Peter,Held Gerhard,von Lilienfeld Toal Marie,Lübbert Michael,Fröhling Stefan,Zenz Thorsten,Krauter Jürgen,Schlegelberger Brigitte,Döhner Hartmut. TP53 alterations in acute myeloid leukemia with complex karyotype correlate with specific copy number alterations, monosomal karyotype, and dismal outcome[J]. Blood,2012,119(9):

[31]A Stengel,W Kern,T Haferlach,M Meggendorfer,A Fasan,C Haferlach. The impact of TP53 mutations and TP53 deletions on survival varies between AML, ALL, MDS and CLL: an analysis of 3307 cases[J]. Leukemia,2017,31(3):

[32]Kottaridis P D,Gale R E,Frew M E,Harrison G,Langabeer S E,Belton A A,Walker H,Wheatley K,Bowen D T,Burnett A K,Goldstone A H,Linch D C. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials.[J]. Blood,2001,98(6):

[33]丁莎莎,沈宏杰,陈子兴,陈苏宁,岑建农,丁子轩,何军.FLT3-ITD突变数量、长度及水平对急性髓系白血病患者预后的影响[J].中华血液学杂志,2015,36(06):449-454.








刘加军 教授

  • 教授、主任医师、博士生导师

  • 中山大学附属第三医院血液内科主任

  • 欧洲肿瘤协会抗癌分会会员

  • 中国免疫协会会员

  • 广东省医疗行业协会常委

  • 广东省血液学会会员等

  • 主研方向:白血病细胞凋亡信号转导机制、造血干细胞移植、血液肿瘤的分子靶向治疗、基因治疗及新型抗肿瘤药物的机制研究等。

  • 医疗专长:从事内科血液学临床医疗工作20多年。多年来从事白血病细胞凋亡信号转导机制及血液肿瘤的分子靶向治疗研究。对各种贫血、出血性疾病及血液肿瘤有熟练的诊治能力。诊疗疾病包括血液病造血干细胞移植、白血病化疗、恶性淋巴瘤和多发性骨髓瘤等恶性血液疾病的个体化治疗方案选择、各种原因不明的贫血、不明原因的长期发热以及淋巴结肿大的鉴别诊断和治疗等。



戳”阅读原文“,我们一起进步

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存