查看原文
其他

空间计量软件代码资源集锦(Matlab/R/Python/SAS/Stata), 不再因空间效应而感到孤独

空间计量研究小组 计量经济圈 2020-02-22

凡是搞计量经济的,都关注这个号了

箱:econometrics666@sina.cn

所有计量经济圈方法论丛的do文件, 微观数据库和各种软件都放在社群里.建议到空间计量研究小组交流访问.计量经济圈空间计量研究小组@陈鑫—同济大学在读博士.

空间计量研究小组推荐

1.空间计量百科全书式的使用指南

2.空间计量经济学最新进展和理论框架

3.空间计量模型选择、估计、权重、检验

4.空间和时间的计量,关注二位国人

咱们空间计量研究小组已经聚集了一大批空间计量专业学者。今天,将给圈友们分享一些空间计量软件代码资源集锦,通过这些资源能够对空间计量有一个整体的把握。如果对空间计量感兴趣且有一些专业基础知识,欢迎到空间计量研究小组交流访问(文后“阅读原文”)。

空间计量百科全书式的使用指南百科指南

空间计量百科全书式的使用指南的do file公开

空间计量的46页Notes, 区经相关学者可参阅


1)Matalb 代码资源:
Elhorst J.P.: 

https://spatial-panels.com/software/
James P. LeSage:

https://www.spatial-econometrics.com/ 
Donald J. Lacombe:

http://myweb.ttu.edu/dolacomb/matlab.html

2)R代码资源:
CRAN Task View:

https://cran.r-project.org/web/views/Spatial.html

3)Python代码资源:
PySAL: 

https://pysal.readthedocs.io/en/latest/users/tutorials/index.html

4)Stata代码资源: 具体操作详见计量经济圈里的《空间计量的46页Notes, 区经相关学者可参阅》:


创建空间权重矩阵

l  spmat --Create and manage spatial-weighting matrix objects  [Author: Drukker et.al,2013]


l  spatwmat---Spatial weights matrices for spatial data analysis  [Author: Pisati ,2012]


l  spwmatrix--- Generates, imports, and exports spatial weights  [Author: Jeanty, updated 2014.03.15]


l  spwmatfill ---Assigns first nearest neighbors to observations with no contiguous neighbors.   [Author: Jeanty, 2010]


l  spweight --- Module to compute Cross-Section and Panel SpatialWeight Matrix  [Author: Shehata, 2013]


l  spweightxt-- Module to compute Cross-Section and Panel Spatial Weight Matrix  [Author: Shehata,2013]


l  spweightcs ---Module to computeCross Section Spatial Weight Matrix  [Author: Shehata, 2013]


l  spcs2xt---Module to Convert Cross Section to Panel Spatial Weight Matrix  [Author: Shehata, 2012]


l  shp2dta ---Module to converts shape boundary files to Stata datasets  [Author: Crow, 2013]


空间自相关检验

l  spautoc --Stata modules to calculate spatial autocorrelation  [Author: Nicholas Cox et.al,2006]


l  spatgsa --Measures of global spatial autocorrelation [Author: Maurizio Pisati, 2001]


l  spatlsa --Measures of local spatial autocorrelation [Author: Maurizio Pisati, 2001]


l  spatcorr --Stata modules to compute and plot spatial autocorrelation  [Author: Maurizio Pisati, 2001]


l  spatdiag --Diagnostic tests for spatial dependence in OLS regression  [Author: Maurizio Pisati, 2001]


l  anketest--Moduleto perform diagnostic tests for spatial autocorrelation in the residuals ofOLS, SAR, IV, and IV-SAR models


l  splagvar-Moduleto generate spatially lagged variables, construct the Moran Scatter plot, andcalculate Moran's I statistics


空间截面回归

l  spatreg- Moduleto estimate the spatial lag and the spatial error regression models by maximumlikelihood.


l  spmlreg--Moduleto estimate the spatial lag, the spatial error, the spatial durbin, and thegeneral spatial models by maximum likelihood


l  spautoreg--Moduleto estimate Spatial Cross Sections Regression (Lag-Error-Durbin-SAC-SPGKS-SPGSAR-GS2SLS-GS3SLS-SPML-SPGS-SPIVREG-IVTobit)


l  sppack--Modulefor cross-section spatial-autoregressive models


l  gs2sls-Moduleto estimate Generalized Spatial Two Stage Least Squares Cross Sections Regression


l  gs2slsar--Module to estimate GeneralizedSpatial Autoregressive Two Stage Least Squares Cross Sections Regression


l  gs3sls--Moduleto estimate Generalized Spatial Three Stage Least Squares Cross SectionsRegression (3SLS)


l  gs3slsar--Module to estimate GeneralizedSpatial Autoregressive Three Stage Least Squares (3SLS) Cross SectionsRegression


l  spgmm--Moduleto estimate Spatial Autoregressive Generalized Method of Moments Cross SectionsRegression


l  spregsac--Module to estimate Maximum Likelihood Estimation AutoCorrelation (SAC) CrossSection Regression


l  spregsar--Moduleto estimate Maximum Likelihood Estimation Spatial Lag Cross Sections Regression


l  spregsdm--Moduleto Estimate Maximum Likelihood Estimation Spatial Durbin Cross SectionsRegression


l  spregsem--Module to Estimate Maximum LikelihoodEstimation Spatial Error Cross Sections Regression


l  spmstard--Moduleto Eestimate Multiparametric Spatio Temporal AutoRegressive Regression SpatialDurbin Cross Sections Models


l  spmstar--Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression Models


l  spmstardh--Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Durbin Multiplicative 

Heteroscedasticity Cross SectionsModels


l  spmstarh--Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Lag Multiplicative Heteroscedasticity Cross Sections Models


l  sptobitmstar--Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Lag Cross Sections Models


l  sptobitmstard--Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Durbin Cross Sections Models


l  sptobitmstardh--Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Durbin Multiplicative HeteroscedasticityCross Sections Models


l  sptobitmstarh--Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Lag Multiplicative Heteroscedasticity CrossSections Models


l  sptobitsar--Moduleto Estimate Tobit MLE Spatial Lag Cross Sections Regression


l  sptobitsem--Moduleto Estimate Tobit MLE Spatial Error Cross Sections Regression


l  sptobitsdm--Moduleto Estimate Tobit MLE Spatial Durbin Cross Sections Regression


l  sptobitsac--Moduleto Estimate Tobit MLE Spatial Autocorrelation Cross Sections Regression


空间面板回归

l  xsmle --Stata modules to calculate spatial Panel Regression  [Author: Belotti et.al, 2014]


l  spglsxt--Moduleto estimate Spatial Panel Autoregressive Generalized Least Squares Regression


l  spregsdmxt:Maximum Likelihood Estimation Spatial Durbin Panel Regression [Author: Shehataet.al, 2014]


l  gs2slsarxt--Moduleto estimate Generalized Spatial Panel Autoregressive Two Stage Least SquaresRegression


l  gs2slsxt--Moduleto estimate Generalized Spatial Panel Autoregressive Two-Stage Least SquaresRegression


l  spgmmxt--Moduleto estimate Spatial Panel Autoregressive Generalized Method of MomentsRegression


l  spmstardhxt--Moduleto estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Durbin Multiplicative Heteroscedasticity Panel Models


l  spmstardxt--Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Durbin Panel Models


l  spmstarhxt--Moduleto Estimate (m-STAR) Spatial Multiparametric Spatio Temporal AutoRegressiveRegression: Spatial Lag Multiplicative Heteroscedasticity Panel Models


l  spmstarxt--Moduleto Estimate (m-STAR) Spatial Panel Multiparametric Spatio TemporalAutoRegressive Regression Models


l  spregdhp--Module to estimate Spatial PanelHan-Philips Linear Dynamic Regression: Lag & Durbin Models


l  spregdpd--Module to estimate Spatial PanelArellano-Bond Linear Dynamic Regression: Lag & Durbin Models


l  spregfext--Module to compute Spatial Panel FixedEffects Regression: Lag and Durbin Models


l  spreghetxt--Module to Estimate Spatial PanelRandom-Effects Multiplicative Heteroscedasticity Regression: Lag and DurbinModels


l  spregrext--Module to compute Spatial PanelRandom Effects Regression: Lag and Durbin Models


l  spregsacxt--Module to Estimate Maximum LikelihoodEstimation Spatial AutoCorrelation (SAC) Panel Regression


l  spregsarxt--Module to Estimate Maximum LikelihoodEstimation Spatial Lag Panel Regression


l  spregsdmxt--Module to Estimate Maximum LikelihoodEstimation Spatial Panel Durbin Regression


l  spregsemxt--Module to Estimate Maximum LikelihoodEstimation Spatial Error Panel Regression


l  Spregxt—New Stata Module Econometric Toolkitto Estimate Spatial Panel Regression Models


l  spxttobit--Moduleto estimate Tobit Spatial Panel Autoregressive 


广义最小二乘法GLS回归

l  sptobitmstardhxt--Moduleto Estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Durbin Multiplicative HeteroscedasticityPanel Models


l sptobitmstardxt--Moduleto estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Durbin Panel Models


l sptobitmstarhxt--Moduleto estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Lag Multiplicative Heteroscedasticity PanelModels


l sptobitmstarxt--Moduleto estimate Tobit (m-STAR) Spatial Multiparametric Spatio TemporalAutoRegressive Regression: Spatial Lag Panel Models


l sptobitsemxt--Moduleto estimate Tobit MLE Spatial Error Panel Regression


l sptobitsacxt--Moduleto estimate Tobit MLE Spatial AutoCorrelation (SAC) Panel Regression


l sptobitsarxt-- Module to estimate Tobit MLE Spatial Lag Panel Regression


l sptobitsdmxt--Moduleto estimate Tobit MLE Spatial Panel Durbin Regression


其他程序

l china_spatdwm--Moduleto provide spatial distance matrices for Chinese provinces and cities


l usswm--Moduleto provide US state and county spatial weight (contiguity) matrices


l  spmap--Moduleto visualize spatial data


l  spseudor2--Module to calculate goodness-of-fit measures in spatial autoregressive models


l  spagg--Moduleto create aggregate source or target contagion spatial effect variable fordirected dyadic data


l  spspc--Module to create specific source or target contagion spatial effect variablefor directed dyadic data


l  spdir--Moduleto create directed dyad contagion spatial effect variable


l  spundir--Moduleto create directed dyad contagion spatial effect variable


l  spmon--Moduleto create spatial effect variable for monadic data


l  spgrid--Moduleto generate two-dimensional grids for spatial data analysis


l  spkde -Moduleto perform kernel estimation of density and intensity functions fortwo-dimensional spatial point patterns


5)SAS代码资源:

The SPATIALREGProcedure:

https://support.sas.com/rnd/app/ ... ets_spatialreg.html

6) 相关论坛

Github: https://github.com/



如果对空间计量感兴趣且有一些专业基础知识,欢迎到空间计量研究小组交流访问(文后“阅读原文”)。

可以到计量经济圈社群进一步访问交流各种学术问题,这年头,我们不能强调一个人的英雄主义,需要多多汲取他人的经验教训来让自己少走弯路。

计量经济圈当前有几个阵地,他们分别是如下4个matrix:

①小鹅社群:数据软件书籍等所有资料(最多且更新频繁),

②微信群:服务于计量经济圈社群群友(最活跃),

③研究小组:因果推断, 空间计量, 面板数据(最专业),

④QQ群:2000人大群服务于社群群友(最大)。


计量经济圈是中国计量第一大社区,我们致力于推动中国计量理论和实证技能的提升,圈子以海内外高校研究生和教师为主。计量经济圈绝对六多精神:社科资料最多、社科数据最多、科研牛人最多、海外名校最多、热情互助最多、前沿趋势最多如果你热爱计量并希望长见识,那欢迎你加入到咱们这个大家庭(戳这里),要不然你只能去其他那些Open access圈子了。注意:进去之后一定要看小鹅社群“群公告”,不然接收不了群息,也不知道怎么进入咱们独一无二的微信群和QQ群在规则框架下社群交流讨论无时间限制。

只有进去之后才能够看见这个群公告


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存