六年级知识点:经济问题
(1)树立“进”与“出”的理念
经济问题其实涉及的是两件事:一个是“进”,即到手里的多少钱;一个是“出”,即给别人多少钱。
二者差价即为盈利或亏损。
(2)明确单位“1”
经济问题中的单位“1”通常是成本(进价),但有时也会有所变化,例如标价等
(1)涉及利润的公式
售价=成本+利润
售价=成本x(1+利润率)
定价=成本想(1+期望利润的百分数)
(2)涉及税务的公式
含税价格=不含税价格x(1+增值税税率)
(1)比率问题,设字母或设数
(2)多商品多状态问题,列表、设未知数
例1:某商店进了一批笔记本,按 30%的利润定价.当售出这批笔记本的 80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润百分数是多少?
解:设这批笔记本的成本是“1”.因此定价是1×(1+ 30%)=1.3.其中80%的卖价是 1.3×80%,
20%的卖价是 1.3÷2×20%.
因此全部卖价是
1.3×80% +1.3 ÷ 2×20%= 1.17.
实际获得利润的百分数是
1.17-1= 0.17=17%.
答:这批笔记本商店实际获得利润是 17%.
例2:有一种商品,甲店进货价(成本)比乙店进货价便宜 10%.甲店按 20%的利润来定价,乙店按 15%的利润来定价,甲店的定价比乙店的定价便宜 11.2元.问甲店的进货价是多少元?
解:设乙店的进货价是“1”,甲店的进货价就是0.9.
乙店的定价是 1×(1+ 15%),甲店的定价就是 0.9×(1+20%).
因此乙店的进货价是:
11.2÷(1.15- 0.9×1.2)=160(元).
甲店的进货价是:160× 0.9= 144(元).
答:甲店的进货价是144元.
设乙店进货价是1,比设甲店进货价是1,计算要方便些.
例3 :开明出版社出版的某种书,今年每册书的成本比去年增加 10%,但是仍保持原售价,因此每本利润下降了40%,那么今年这种书的成本在售价中所占的百分数是多少?
解:设去年的利润是“1”.
利润下降了40%,转变成去年成本的 10%,因此去年成本是 40%÷10%= 4.
在售价中,去年成本占因此今年占 80%×(1+10%)= 88%.
答:今年书的成本在售价中占88%.
因为是利润的变化,所以设去年利润是1,便于衡量,使计算较简捷.
例4 :一批商品,按期望获得 50%的利润来定价.结果只销掉 70%的商品.为尽早销掉剩下的商品,商店决定按定价打折扣销售.这样所获得的全部利润,是原来的期望利润的82%,问:打了多少折扣?
解:设商品的成本是“1”.原来希望获得利润0.5.
现在出售 70%商品已获得利润0.5×70%= 0.35.
剩下的 30%商品将要获得利润0.5×82%-0.35=0.06.
因此这剩下30%商品的售价是1×30%+ 0.06= 0.36.
原来定价是 1×30%×(1+50%)=0.45.
因此所打的折扣百分数是0.36÷0.45=80%.
答:剩下商品打8折出售.
从例1至例5,解题开始都设“1”,这是基本技巧.设什么是“1”,很有讲究.希望读者从中能有所体会.
例5 :某商品按定价出售,每个可以获得45元钱的利润.现在按定价打85折出售8个,所能获得的利润,与按定价每个减价35元出售12个所能获得的利润一样.问这一商品每个定价是多少元?
解:按定价每个可以获得利润45元,现每个减价35元出售12个,共可获得利润:
(45-35)×12=120(元).
出售8个也能获得同样利润,每个要获得利润:120÷8=15(元).
不打折扣每个可以获得利润45元,打85折每个可以获得利润15元,因此每个商品的定价是:(45-15)÷(1-85%)=200(元).
答:每个商品的定价是200元.