华南理工大学又一篇Nature,解决一项世纪难题!
为了将同位素用于科学、和技术的重要应用,化学家试图利用基于分子化学的简单策略来分离同位素,如通过电解使水同位素键解离,或使用宿主材料,如笼状化合物或刚性多孔材料,来捕获其中一种同位素。然而,由于同位素之间的分子内结构和分子间相互作用具有固有的相似性,因此分离同位素非常困难。
水同位素在生物过程、工业、医疗等方面非常重要,是最难分离的同位素对之一,因为它们的物理化学性质和化学交换平衡非常相似。
2022年11月9日,华南理工大学顾成团队与日本京都大学Susumu Kitagawa团队合作在Nature杂志在线发表题为“Separating water isotopologues using diffusion-regulatory porous materials”的研究论文,该研究报道了通过构建两个多孔配位聚合物——多孔配位聚合物(PCPs)或金属有机框架(metal–organic frameworks, MOFs)的动态特性,在室温下高效分离水同位素的方法,其中框架内的触发器分子运动提供了扩散调节功能。来宾流量受收缩孔隙孔上动态门的局部运动调节,从而放大了水同位素扩散速率的微小差异。
两种PCPs均发生显著的温度响应吸附:H2O蒸汽优先被吸附到PCPs中,与D2O蒸汽相比吸收量大幅增加,促进了基于动力学的H2O/HDO/D2O三元混合物的蒸汽分离,在室温下水分离系数高达210左右。
另外,2022年9月7日,华南理工大学黄飞教授、曹镛院士、马於光院士和北京大学裴坚教授、南方科技大学郭旭岗教授等合作在Nature 在线发表题为“A solution-processed n-type conducting polymer with ultrahigh conductivity”的研究论文,该研究提出了一种容易合成的高导电 n 型聚合物(聚苯二呋喃二酮)(PBFDO)。该反应结合了氧化聚合和原位还原 n 掺杂,显著提高了掺杂效率,并且每个重复单元可以实现几乎 0.9 个电荷的掺杂水平。所得聚合物表现出超过 2000 S cm−1的突破性电导率,具有出色的稳定性和出乎意料的溶液加工性,无需额外的侧链或表面活性剂。此外,对 PBFDO 的详细研究揭示了相干电荷传输特性和金属态的存在。进一步证明了电化学晶体管和热电发电机的基准性能,从而为 n 型 CP 在有机电子学中的应用铺平了道路(点击阅读)。