他又在北航发Science了,第3篇,厉害了!
壮丽70年•奋斗新时代
庆祝新中国成立70周年
2019年9月27日,《Science》杂志在线以全文Article的形式发表了北京航空航天大学材料科学与工程学院赵立东教授课题组在热电材料研究上取得的新进展:
《High thermoelectric performance in low-cost SnS0.91Se0.09 crystals》
发现并利用硫化锡(SnS)的多个能带随着温度的演变规律,通过引入Se优化调控了有效质量和迁移率的矛盾,在储量丰富、成本低廉、环境友好的SnS晶体材料中实现了高的热电性能 (Science 365 (2019) 1418-1424.)。
第一作者:何文科 (北航2018级博士研究生)
导师和通讯作者:赵立东
第一单位:北京航空航天大学,材料科学与工程学院
热电转换技术是一种利用Seebeck效应(温差发电)和Peltier效应(通电制冷)实现电能与热能相互转换的技术,具有系统体积小、无运动部件、无磨损、无噪音和无污染等诸多优点,在废热发电和电子制冷等关键领域有着重要的应用,如利用热电材料的温差发电技术是深空探测中不可替代的能源技术。
热电转换效率是衡量其热电材料性能的重要参数,由热电性能优值(ZT值)决定,其中:
所以,性能优异的热电材料应同时具有大的温差电动势S(维持大的温差电压)、高的电导率σ(减少焦耳损耗)和低的热导率κ(保持大的温差)。然而这些热电参数是相互纠缠耦合的,严重制约了ZT值的提高,有效地调控这些复杂耦合的热电参数是提高ZT值和转换效率的关键。近年来,提高ZT值的策略层出不穷:如通过点缺陷、位错、界面、结构纳米化等多尺度缺陷设计降低热导率(κ);调整电子能带结构、晶体结构对称性、相转变等实现高的电传输性能引入磁性纳米粒子实现电-声-磁协同调控;直接寻找具有本征低热导κ或高功率因子PF的热电材料:
或通过高通量计算手段筛选有效热电材料等。
2014年,SnSe被发现是一种具有强非简谐效应的热电材料后 (Nature 508 (2014) 373-377),又相继发现了SnSe的多价带传输特性(Science 351 (2016) 141-144)和SnSe的面外方向“二维声子 / 三维电荷”传输特性(Science 360 (2018) 778-783)。与此同时,该课题组近年来以开发低成本、环境友好、储量丰富的热电材料为目标。与同IV-VI族热电材料相比(PbTe, PbSe, PbS, SnTe, SnSe,其中Te的储量丰度是0.001ppm,Se为0.05ppm,S为420ppm),可见SnS是具备以上特征的最具吸引力化合物之一,但面临的挑战是如何改善SnS的电传输性能(电导率和温差电动势)。由于硫化物的强电负性和宽带隙,一直不被认为是一种电的良导体。经过2年的探索研究,摸索出了SnS晶体的生长方法,通过利用晶体的各向异性,在层内方向获得了高于多晶材料(J. Mater. Chem. A, 2 (2014) 17302-17306)10-15倍的迁移率(J. Mater. Chem. A, 6 (2018) 10048-10056),成功地改善了SnS的电导率。
热电材料不但需要好的电导率,也需要大的温差电动势,这是一对受载流子浓度制约的矛盾。本次工作主要集中在温差电动势和电导率的优化上,即有效质量m*和迁移率μ的协同调控(也是一对矛盾),调控优化程度可由品质因子β来衡量
实验上,首先通过变温同步辐射测试获得了不同温度下的原子占位信息,结合电子能带结构计算,研究发现在SnS材料中存在多个价带随温度的协同互动(示意图如下)。
即多个价带经历了收敛(增加有效质量和减小迁移率),相交(收敛与分离),以及分离(减小有效质量和增加迁移率)三个过程。进一步研究发现,这一多价带随温度的演变过程可以通过在SnS中引入Se实现增强,如下图所示。
通过能带结构调控(固溶Se),使价带尖锐化,同时更多的价带参与传输,进一步增强电输运性能。
同时发现,Se的引入还可使多价带尖锐化(减小有效质量和增加迁移率),而且还可促进更多的价带(第四个价带)参与传输(维持较大的有效质量)。引入Se后,在迁移率提升的同时,维持了大的有效质量,从而获得了大的品质因子β,使SnS晶体在整个温区内实现了很高的电传输性能,甚至优于具有多价带传输特性的SnSe晶体(Science 351 (2016) 141-144)。SnS晶体的最大ZT值从 ~ 1.0提高到 ~ 1.6,整个温区内平均ZT值达到 ~ 1.25。与同IV-VI族热电材料相比,SnS是一种环境友好(environmentally-friendly)、高效(high-efficiency)、高性价比(cost-effective)的热电材料,在未来大规模的热电器件应用中极具吸引力。
该工作由来自于11家单位的27位合作作者共同完成:如清华大学的李敬锋教授课题组、南方科技大学的何佳清教授课题组和刘畅教授课题组、新加坡国立大学的Stephen J. Pennycook教授课题组、日本产业技术研究所的Michihiro Ohta教授课题组、中国原子能院的郝丽杰研究员和牛厂磊高工、中国工程物理研究院的宋建明副研究员、中科院高能物理所的徐伟副研究员和河南师范大学的王广涛教授。该工作采用了多种先进测试及表征手段:如变温同步辐射X射线衍射(SR-XRD)、密度泛函理论计算(DFT)、角分辨光电子能谱(ARPES)、X射线吸收精细结构谱(XAFS)、非弹性中子衍射(INS)、球差扫描透射显微镜(STEM)、中子探伤性能稳定性测试和热电器件转换效率测试等。
该工作主要得到了国家自然科学基金基础科学中心项目(51788104)、国家重点研究开发项目(2018YFA0702100, 2018YFB0703600)、国家自然科学基金面上项目 (51772012, 51632005, 51571007)、北京市杰出青年基金项目(JQ18004)和教育部111引智计划(B17002)等的资助。
这时 小萱眉头一皱
发现事情并不简单
这已经不是赵立东教授团队
第一次在Science上发表相关成果
甚至也不是第二次了!
速速往下看
点击图片了解更多
2015年11月26日,《Science》在线发表了北京航空航天大学材料学院赵立东教授等学者在硒化锡热电材料上取得的突破性研究成果——应用硒化锡独有的特殊电子能带结构和多谷效应,可以将其在300-773K宽温区范围内的热电性能大幅提高。论文名称为《Ultra-high power factor and thermoelectric performance in hole doped single crystal SnSe》,赵立东为第一作者和共同通讯作者(北航为第一完成单位)。
2018年5月18日,《Science》杂志再次发表了赵立东教授课题组在热电材料研究上的更新进展:《3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals》。利用硒化锡(SnSe)的层间最低热传导特性(二维声子传输),通过电子掺杂促进离域电子杂化,实现了电子在n型SnSe层间的隧穿(三维电荷传输),赵立东为导师和通讯作者(北航为第一完成单位)。
3篇《Science》,朋友们!
北航这位青年学者
到底有多厉害
让我们一睹真容
赵 立 东
北京航空航天大学
材料科学与工程学院
教授、博士生导师
1979年生于哈尔滨。2001和2005年先后获得辽宁工程技术大学学士和硕士学位。2009年获得北京科技大学材料学博士学位。2009-2014年先后在巴黎十一大学和美国西北大学从事博士后研究。2014年入职北航卓越百人计划。2016年获北京市师德模范称号。2017年获国际热电学会青年科学家奖。2018年获北京市杰出青年基金项目支持。
为本科生《新能源材料》、博硕士研究生《现代材料检测方法》和留学生《Thermoelectric Materials for Power Generation》教授新能源材料相关的授课。主要研究兴趣为热电能源转换材料,发现了多种具有层状结构的高效热电材料(BiCuSeO, SnSe, SnS等),利用层状各向异性协同调控复杂耦合的热电参数。已在Science、Nature、Chem. Rev.、J. Am. Chem. Soc.、Adv. Mater.、Energy Environ. Sci.等期刊上发表SCI论文170余篇,被引用 12000余次。授权美国专利1项,国家发明专利10余项。
何 文 科
北京航空航天大学
材料科学与工程学院
2018级博士研究生
1994年出生于湖北省仙桃市。2016年本科毕业于三峡大学,并获得优秀毕业生称号。同年9月考取北京航空航天大学硕士研究生,进入赵立东教授课题组,并于2018年通过硕博连读继续攻读博士学位。研究生期间,主要研究硫化锡(SnS)层状结构材料的制备及其热电传输性能的研究,目前共发表SCI论文6篇(其中第一作者2篇),申请国家发明专利1项。
论文原文链接:
https://science.sciencemag.org/content/365/6460/1418
赵立东教授课题组网站链接:
出品 | 航小萱工作室
来源 | 赵立东教授课题组
编辑 | 陈烁 史越
部分素材来自网络
那么,问题来了
1994年出生的他
已经以第一作者身份发了Science
而你还在?😉
和小萱一起
为优秀的北航人
点1000个在看(赞)👍👍👍