其他
教程 | 基于LSTM实现手写数字识别
点击上方↑↑↑“OpenCV学堂”关注我
基于tensorflow,如何实现一个简单的循环神经网络,完成手写数字识别,附完整演示代码。
LSTM网络构建
01
基于tensorflow实现简单的LSTM网络,完成mnist手写数字数据集训练与识别。这个其中最重要的构建一个LSTM网络,tensorflow已经给我们提供相关的API, 我们只要使用相关API就可以轻松构建一个简单的LSTM网络。
首先定义输入与目标标签
# create RNN network
X = tf.placeholder(shape=[None, time_steps, num_features], dtype=tf.float32)
Y = tf.placeholder(shape=[None, 10], dtype=tf.float32)
其中
None: 表示batchsize的大小或者数目
time_steps: 网络把输出重新输入的次数
num_features: 输入矩阵/神经元
构建LSTM单元
lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
其中:
lstm_cell 表示 LSTM 的单元
num_hidden : 隐藏层节点数目
forget_bias: 遗忘门中要加上的增益偏置outputs: 网络输出
states:状态
这样我们就构建好一个LSTM循环神经网络了,它的执行过程是很魔幻的。简直是神奇!以后再说。
代码程序执行与输出
02
完整的代码演示分为如下几个部分:
加载数据集
创建LSTM网络
训练网络
执行测试
import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
print(tf.__version__)
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
num_hidden = 128
time_steps = 28
num_features = 28
num_classes = 10
batch_size = 128
# create RNN network
X = tf.placeholder(shape=[None, time_steps, num_features], dtype=tf.float32)
Y = tf.placeholder(shape=[None, 10], dtype=tf.float32)
# Define weights
weights = {
'out': tf.Variable(tf.random_normal([num_hidden, num_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([num_classes]))
}
def rnn_network(x, weights, biases):
x = tf.unstack(x, time_steps, 1)
lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
return tf.matmul(outputs[-1], weights['out']) + biases['out']
# 输入预测
logits = rnn_network(X, weights, biases)
prediction = tf.nn.softmax(logits)
# 定义损失函数与优化器
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=Y))
optimizer = tf.train.AdamOptimizer()
train_op = optimizer.minimize(loss_op)
# 计算识别精度
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# 开始训练
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(1, 5001):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((batch_size, time_steps, num_features))
# Run optimization op (backprop)
sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
if step % 1000 == 0 or step == 1:
# Calculate batch loss and accuracy
loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
Y: batch_y})
print("Step " + str(step) + ", Loss= " + \
"{:.4f}".format(loss) + ", Training Accuracy= " + \
"{:.3f}".format(acc))
print("Optimization Finished!")
# 使用测试数据集测试训练号的模型, 测试128张手写数字图像
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, time_steps, num_features))
test_label = mnist.test.labels[:test_len]
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))
运行输出如下:
推荐阅读
请给我一个 在看
夏至未至,阳光也很灿烂
一篇充满夏日气息
?
Modified on