查看原文
其他

达摩院2023十大科技趋势公布:Chiplet、存算一体、生成式AI等技术入选!

芯智讯 2023-02-10

1月11日,《达摩院2023十大科技趋势》发布,多模态预训练大模型、Chiplet、存算一体、云原生安全、软硬融合云计算体系架构、端网融合的可预期网络、双引擎智能决策、计算光学成像、大规模城市数字孪生、生成式AI等十大技术入选。

达摩院认为,全球科技日趋显现出交叉融合发展的新态势,尤其在信息与通信技术(ICT)领域酝酿的新裂变,将为科技产业革新注入动力,基于技术迭代与产业应用的融合创新,将驱动AI、云计算、芯片等领域实现阶段性跃迁。

据悉,达摩院2023十大科技趋势采用“巴斯德象限”研究思路,基于论文和专利的大数据“定量发散”,对产、学、研、用领域近百位专家深度访谈进行“定性收敛”,再从学术创新、技术突破、产业落地、市场需求等维度综合评估,力求“致广大而尽精微”,最后遴选出十大趋势。

趋势一、多模态预训练大模型

基于多模态的预训练大模型将实现图文音统一知识表示,成为人工智能基础设施。

摘要:

人工智能正在从文本、语音、视觉等单模态智能,向着多种模态融合的通用人工智能方向发展。多模态统一建模,目的是增强模型的跨模态语义对齐能力,打通各个模态之间的关系,使得模型逐步标准化。目前,技术上的突出进展来自于 CLIP(匹配图像和文本)和 BEiT-3(通用多模态基础模型)。基于多领域知识,构建统一的、跨场景、多任务的多模态基础模型已成为人工智能的重点发展方向。未来大模型作为基础设施,将实现图像、文本、音频统一知识表示,并朝着能推理、能回答问题、能总结、做创作的认知智能方向演进。

趋势解读:

基于深度学习的多模态预训练是认知智能快速发展的重要推动力。构建多场景、多任务的预训练大模型将加速模型标准化进程,为人工智能模型成为基础设施创造条件。深度学习模型的不断完善、互联网海量真实数据的积累和生成式预训练的广泛应用,使得人工智能模型在自然语言理解、语音处理、计算机视觉等领域地交叉应用取得显著进展。

2022 年,技术上的突出进展来自于 BEiT-3 多模态基础模型,该模型在视觉 - 语言任务处理上具备出色表现,包括视觉问答、图片描述生成和跨模态检索等。BEiT-3 通过统一的模型框架和骨干网络(backbone)建模,能够更加轻松地完成多模态编码和处理不同的下游任务。另一方面,CLIP(ContrastiveLanguage-Image Pre-training)的 广 泛应用也促进了多模态模型的技术发展。CLIP 作为基于对比学习的预训练模型,负责从文本特征映射到图像特征,能够指导 GAN 或扩散模型(DiffusionModel)生 成 图 像。在 文 生 图 领 域,Stable Diffusion 也使用了 CLIP,它能够通过文本提示调整模型,并借助扩散模型改善图像质量。与此同时,开源极大的促进了多模态的融合和预训练模型的发展。通过开源来降低模型使用门槛,将大模型从一种新兴的 AI 技术转变为稳健的基础设施,已成为许多大模型开发者的共识。

多模态预训练模型的发展将重塑人工智能商业模式,并为人们的生产生活方式带来积极影响。对个人而言,类似CLIP 的多模态模型,将使更多非技术出身的人能够表达自己的创造力,无需再借助工具和编程专业能力。对企业来说,多模态预训练模型将成为企业生产效率提升的关键。商业模式上,具备大数据、算力资源和模型开发能力的科技企业,将会成为模型服务的提供方,帮助企业将基础模型的能力与生产流程融合起来,实现效率和成本最优。

认知智能的发展,不会局限在文本或图像等单一的模态上。未来,如何针对不同模态建立更高效的模型架构和统一的骨干网络,使得大模型能够广泛地支持各种下游任务将成为主要挑战。在此基础上,更多的挑战来自于挖掘不同模态(如图像 - 文本,文本 - 自然语言,视频 - 文本)数据间的相关信息,并巧妙的设计预训练任务,让模型更好的捕捉不同模态信息之间的关联。

语音、视觉和多模态预训练模型将加速人工智能向通用基础模型方向演进。在这个演进过程中,深度学习与强化学习相互促进发展,融合大量行业知识,模型将具备在不断变化的环境中快速适应的灵活性。建立统一的、跨场景、多任务的多模态基础模型会成为人工智能发展的主流趋势之一。随着技术的不断成熟,大模型在开发成本、易用性、开发周期、性能上会更具优势,给产品化和商业化带来更多可能性。

趋势二、Chiplet

Chiplet 的互联标准将逐渐统一,重构芯片研发流程。

摘要:

Chiplet 是硅片级别的“解构 - 重构 -复用”,它把传统的 SoC 分解为多个芯粒模块,将这些芯粒分开制备后再通过互联封装形成一个完整芯片。芯粒可以采用不同工艺进行分离制造,可以显著降低成本,并实现一种新形式的 IP 复用。

随着摩尔定律的放缓,Chiplet 成为持续提高 SoC 集成度和算力的重要途径,特别是随着 2022 年 3 月份 UCle 联盟的成立,Chiplet 互联标准将逐渐统一,产业化进程将进一步加速。基于先进封装技术的 Chiplet 可能将重构芯片研发流程,从制造到封测,从 EDA 到设计,全方位影响芯片的区域与产业格局。

趋势解读:

自1965 年摩尔定律首次被提出以来,集成电路产业一直遵循着摩尔定律向前发展。直到近几年,随着晶体管尺寸逼近材料的物理极限,工艺节点进步的花费已难以承受,芯片性能的提升也不再显著,摩尔定律接近极致。在此背景下,Chiplet(芯粒)技术逐渐崭露头角,有望成为产业界解决高性能、低成本芯片需求的重要技术路线。

Chiplet 创新了芯片封装理念。它把原本一体的 SoC(System on Chip,系统级芯片)分解为多个芯粒,分开制备出这些芯粒后,再将它们互联封装在一起,形成完整的复杂功能芯片。这其中,芯粒可以采用不同的工艺进行分离制造,例如对于 CPU、GPU 等工艺提升敏感的模块,采用昂贵的先进制程生产;而对于工艺提升不敏感的模块,采用成熟制程制造。同时,芯粒相比于 SoC 面积更小,可以大幅提高芯片的良率、提升晶圆面积利用率,进一步降低制造成本。此外,模块化的芯粒可以减少重复设计和验证环节,降低芯片的设计复杂度和研发成本,加快产品的迭代速度。Chiplet 被验证可以有效降低制造成本,已成为头部厂商和投资界关注的热点。

Chiplet 的技术核心在于实现芯粒间的高速互联。SoC 分解为芯粒使得封装难度陡增,如何保障互联封装时芯粒连接工艺的可靠性、普适性,实现芯粒间数据传输的大带宽、低延迟,是 Chiplet 技术研发的关键。此外,芯粒之间的互联特别是2.5D、3D 先进封装会带来电磁干扰、信号干扰、散热、应力等诸多复杂物理问题,这需要在芯片设计时就将其纳入考虑,并对 EDA 工具提出全新的要求。

近年来,先进封装技术发展迅速。作为2.5D、3 D封装关键技术的TSV(Through Silicon Via,硅通孔)已可以实现一平方毫米100万个TSV。封装技术的进步,推动Chiplet应用于CPU、GPU等大型芯片。2022年3月,多家半导体领军企业联合成立了UCIe(Universal ChipletInterconnect Express,通用Chiplet高速互联联盟)。Chiplet互联标准有望逐渐实现统一,并形成一个开放性生态体系。

面向后摩尔时代,Chiplet 可能将是突破现有困境最现实的技术路径。Chiplet可以降低对先进工艺制程的依赖,实现与先进工艺相接近的性能,成为半导体产业发展重点。从成本、良率平衡的角度出发,2D、2.5D 和 3D 封装会长期并存;同构和异构的多芯粒封装会长期并存;不同的先进封装和工艺会被混合使用。Chiplet 有望重构芯片研发流程,从制造到封测,从EDA 到设计,全方位影响芯片产业格局。

趋势三、存算一体

资本和产业双轮驱动,存算一体芯片将在垂直细分领域迎来规模化商用。

摘要:

存算一体旨在计算单元与存储单元融合,在实现数据存储的同时直接进行计算,以消除数据搬移带来的开销,极大提升运算效率,以实现计算存储的高效节能。存算一体非常符合高访存、高 并 行 的 人 工 智 能 场 景 计 算 需 求。在产 业 和 投 资 的 驱 动 下, 基 于 SRAM,DRAM,Flash 存储介质的产品进入验证期,将优先在低功耗、小算力的端侧如智能家居、可穿戴设备、泛机器人、智能安防等计算场景落地。未来,随着存算一体芯片在云端推理大算力场景落地,或将带来计算架构的变革。它推动传统的以计算为中心的架构向以数据为中心的架构演进,并对云计算、人工智能、物联网等产业发展带来积极影响。

趋势解读:

随着AI 在各领域的应用逐渐广泛,以深度学习为代表的神经网络算法需要系统高效处理海量的非结构化数据,例如文本、视频、图像、语音等。

而传统冯·诺依曼体系下运行的计算机通常包括存储单元和计算单元两部分,数据需要在处理器与存储器之间进行频繁迁移,如果内存的传输速度跟不上 CPU的性能,就会导致计算能力受到限制,出现“内存墙” “功耗墙”。这就对芯片的并行运算、低延迟、带宽提出了更高的要求。

近年来,产业界领军企业在存算一体的前沿技术研究上持续发力。三星在顶级学术期刊 Nature 上发表了全球首个基于 MRAM(磁性随机存储器)的存内计算研究;台积电在 ISSCC 上合作发表了六篇关于存内计算存储器 IP 的论文,大力推进基于 ReRAM 的存内计算方案;SK 海力士则发表了基于 GDDR 接口的DRAM 存内计算研究。学术界和产业界普遍认为存算一体有望成为突破算力性能和功耗瓶颈的技术方向之一。特别是在大规模并行计算场景中,例如 VR/AR、无人驾驶、天文数据计算、遥感影像数据分析等,存算一体芯片具备高带宽、低功耗的显著优势。微观上,算力是一个具体的技术指标。算的快(高吞吐、低延迟)、算的准(高精准度)、算的省(低成本、低功耗)是对算力的基本要求。存算一体是从微观层面进行架构的优化,面临存储器设计和生产工艺的挑战,需要整个产业链的参与支持。

实现存算一体的技术路径主要有以下三个:技术较成熟的是近存计算,利用先进封装技术把计算逻辑芯片和存储器封装到一起,通过减少内存和处理单元的路径,以高 I/O 密度来实现高内存带宽以及较低的访问开销。近存计算主要通过 2.5D、3D 堆叠来实现,广泛应用在各类 CPU 和 GPU 上;近期投资热度较高的是存内计算,通过传统的存储介质如DRAM、SRAM、NOR Flash、NANDFlash 来实现。计算操作由位于存储芯片/ 区域内部的独立计算单元完成,更适用于算法固定的场景;技术尚处于探索期的是基于非易失性存储器技术做的新型存储原件,比如通过忆阻器 ReRAM 电阻调制来实现数据存储。其他如相变存储器(PCM)、自旋磁存储器 (MRAM) 等,也作为存算一体新的技术路径。存算一体的计算方式分为数字计算和模拟计算。数字计算主要以 SRAM 作为存储器件,具有高性能、高精度的优势,更适合大算力高能效场景。模拟计算通常使用 FLASH、ReRAM 等非易失性介质作为存储器件,存储密度大,并行度高,更适合小算力,计算精度要求不高的场景。

目前,存算一体已经在产业细分领域掀起了创业浪潮,并受到投资界和产业界的关注和投入。存算一体在技术上向着高精度、高算力和高能效的方向发展。在资本和产业双轮驱动下,基于 SRAM、NOR Flash 等成熟存储器的存内计算将在垂直领域迎来规模化商用,小算力、低功耗场景有望优先迎来产品和生态的升级迭代,大算力通用计算场景或将进入技术产品化初期。基于非易失性、新型存储元件的存算一体依赖于工艺、良率的提升,走向成熟预计需要 5-10 年。

趋势四、云原生安全

安全技术与云紧密结合,打造平台化、智能化的新型安全体系。

摘要:

云原生安全是安全理念从边界防御向纵深防御、从外挂模式向内生安全的转变,实现云基础设施的原生安全,并基于云原生技术提升安全的服务能力。安全技术与云计算由相对松散走向紧密结合,经过“容器化部署”、“微服务化转型”走向“无服务器化”的技术路线,实现安全服务的原生化、精细化、平台化和智能化:

● 以安全左移为原则,构建产品研发、安全、运维一体化的产品安全体系,增进研发,安全和运维融合协同;

● 以统一的身份验证和配置管理为基础,实现精准授权和动态策略配置;

● 以纵深防御体系为架构,平台级的安全产品为依托,实现精准主动防御,化解传统安全产品碎片化的问题;

● 以安全运营为牵引,实现涵盖应用、云产品、网络等全链路的实时检测、精准响应、快速溯源和威胁狩猎。

趋势解读:

随着云计算与各领域深度融合,云上快速迭代、弹性伸缩、海量数据处理等特征要求安全防护体系相应升级,为动态变化、复杂多元的运行环境提供有效的安全防护。

云原生安全是依托云原生理念和技术特性对安全体系进行的优化和重构,通过逐步实现安全技术服务的轻量化、敏捷化、精细化和智能化,来保障云基础设施的原生安全,并形成更强的安全能力。其基本特征包括全链路的

DevSecOps 安全管理,一体化精细化的身份与权限管控、平台化的纵深防御体系,以及实时化、综合化的可视、可管、可控体系。

云原生安全经历了一系列变迁:从安全保障云原生到云原生赋能安全,内涵不断扩展,逐步形成了一套涵盖基础设施、应用、数据、研发测试、安全运营等在内的防护体系。云原生应用保护平台、面向云原生的攻击面管理平台、云原生威胁检测与响应、云原生事件取证与溯源等,这一系列新型的防护措施也应运而生、快速发展,得到了业界共识。

从管理视角、运营视角和用户视角,可以看到云原生安全的三方面价值:

● 全链路风险可视可控。将安全和合规要求贯穿软件生产和服务全链路,及时扫描检查关键环节,避免后期处置造成被动,最大程度降低整体风险管控成本。

● 基础设施安全运营闭环高效。安全防护功能融合化,可以实现异常事件响应处置流程的闭环管理;策略执行自动化,可减少对安全运营人员的依赖,降低误操作概率;同时,自动阻断机制可以为应对攻击和修复争取更充分的时间。

●云上客户资产全面保障。帮助客户全面、实时监测各类数据资产;在身份验证、配置管理、应用运行时监控、数据安全保护等方面提供多元化、灵活调用的安全服务。实践中,云原生安全也面临着一系列挑战,比如在异构复杂环境中各类数字资产的监控数据如何快速、高质量的采集汇聚;云上各方如何明晰权责,形成开放协同的安全生态等等。

未来 3-5 年,云原生安全将更好的适应多云架构,帮助客户构建覆盖混合架构、全链路、动态精准的安全防护体系。同时配套构建起新型治理体系和专业人才体系;在安全防护效能方面,智能化技术为实现细粒度的访问鉴权、数据安全管控、风险自动识别和处置提供强有力的支持,保障用户顺畅高效使用,提供无摩擦的服务体验。同时,基于云的安全服务形式也将不断创新,云原生的安全托管,以攻促防等形式将逐步发展成熟,成为安全体系的重要组成部分。

趋势五、软硬融合云计算体系架构

云计算向以 CIPU 为中心的全新云计算体系架构深度演进,通过软件定义,硬件加速, 在保持云上应用开发的高弹性和敏捷性同时,带来云上应用的全面加速。

摘要:

云计算从以 CPU 为中心的计算体系架构向以云基础设施处理器(CIPU)为中心的全新体系架构深度演进。通过软件定义,硬件加速,在保持云上应用开发的高弹性和敏捷性同时,带来云上应用的全面加速。新的体系架构下,软硬一体化带来硬件结构的融合,接入物理的计算、存储、网络资源,通过硬件资源的快速云化实现硬件加速。此外,新架构也带来软件系统的融合。这意味着以 CIPU 云化加速后的算力资源,可通过 CIPU 上的控制器接入分布式平台,实现云资源的灵活管理、调度和编排。在此基础上,CIPU 将定义下一代云计算的服务标准,给核心软件研发和专用芯片行业带来新的发展机遇。

趋势解读:

随着后摩尔时代的带来,CPU 的性能提升趋近于天花板,数据量的爆发式增长带来极高的数据处理需求。企业在大数据、 AI 等数据密集型计算的应用场景越来越多。这两方面的因素导致以 CPU 中心的云计算体系架构碰上了技术瓶颈,无法应对云上时延和带宽的进一步扩展。传统的 CPU 体系架构需要向着软硬一体化的方向迭代升级。

云计算的体系架构发展经历了三个阶段,已经解决了超高并发和大算力的经济性问题。第一阶段在 2010 年左右,以 X86 服务器、互联网中间件为代表的分布式架构技术为主。第二阶段在 2015年左右,云厂商通过软件定义的方式,构建了虚拟私有云(VPC)和计算存储分离的池化架构。在新的池化架构之下,计算存储网络资源可以分别实现按需扩容。

目前,云计算进入第三阶段,引入专用硬件,形成软硬一体化的虚拟化架构,实现了全面硬件加速。这个阶段云计算面临的挑战,是在数据密集计算、云数据中心东西流量越来越大的趋势下,实现云计算单位成本下更高的计算性能,以及更高效的云数据中心管理。而计算效率的提升,还需要回到芯片和系统底层中去。

以CIPU为核心的云计算体系架构,在工程实现上主要有以下三方面突破:首先,是底层硬件结构的融合,带来全面硬件加速。基于 CIPU 的新架构能够向下管理数据中心硬件,配合云操作系统,对计算、存储,网络,安全进行全面加速,把 IDC 真正变成一台高速

总线互联的超级计算机。在用户云上计算最需要的基础云网络和云存储链路上提供更低的延迟、更高的带宽和吞吐。

其次,在全链路实现硬件加速的基础上,创新地实现了 eRDMA,不但能够大规模组网,还能让用户无需修改负载的代码,无感加速, 让云上的高性能计算普惠服务化成为现实。

最后,在全新的云数据中心硬件体系架构下,CIPU 和服务器的系统组合,既可以一对多,也能实现多对一,高效满足云上不同计算场景下东西向流量计算配比的灵活需求。

软硬融合的云计算体系架构,保持了软件定义,在分布式架构时期构建的交付敏捷性和灵活度,池化架构时期构建的弹性、可靠性、可用性,还带来了云上应用的全面加速,显著提升了计算性能。

未来三年,云计算向以 CIPU 为中心的全新云计算体系架构深度演进,云上的函数计算,容器服务,数据库服务,大数据服务,AI 等云服务,也将全面被CIPU 加速。从购买计算资源进行自身应用加速,到全面使用云上服务,用户将获得 CIPU 加速带来的全面体验。从资源到服务,云计算服务的核心价值,很大程度将取决于云厂商能提供的底层计算能力和计算效率。

趋势六、端网融合的可预期网络

基于云定义的可预期网络技术,即将从数据中心的局域应用走向全网推广。

摘要:

可预期网络(Predictable Fabric)是由云计算定义,服务器端侧和网络协同的高性能网络互联系统。计算体系和网络体系正在相互融合,高性能网络互联使能算力集群的规模扩展,从而形成了大算力资源池,加速了算力普惠化,让算力走向大规模产业应用。可预期网络不仅支持新兴的大算力和高性能计算场景,也适用于通用计算场景,是融合了传统网络和未来网络的产业趋势。通过云定义的协议、软件、芯片、硬件、架构、平台的全栈创新,可预期高算力网络有望颠覆目前基于传统互联网 TCP 协议的技术体系,成为下一代数据中心网络的基本特征,并从数据中心的局域应用走向全网推广。

趋势解读:

可预 期 网 络(Predictable Fabric)是由云计算定义,服务器端侧和网络协同的高性能网络互联系统。计算体系和网络体系正在相互融合,它通过高性能网络互联使能算力集群的规模扩展,从而形成大算力资源池,加速了算力普惠化,让算力走向大规模产业应用。可预期网络不仅支持新兴的大算力和高性能计算场景,也适用于通用计算场景,是融合了传统网络和未来网络的产业趋势。

网络的本质是连接。高带宽、低时延、高稳定性、少抖动一直是网络追求的目标。传统 TCP 网络协议栈,虽然在互联网中广泛部署和应用,但是 TCP 协议栈诞生时期的网络带宽和质量已经无法与如今大带宽高质量的数据中心网络相提并论。端侧和网络分层解耦,基于网络黑盒传统尽力而为(best-effort)的网络体系结构,无法满足当今大算力池化所需要的高性能网络互联需求。因此,“可预期的”高性能网络架构在大算力需求驱动下应运而生。这对于传统基于“尽力而为”的网络体系提出了新的挑战。

可预期网络以大算力为基本出发点,把端网融合作为实现方式。可预期网络摒弃传统端侧计算、存储和网络分层解耦的架构,创新地采用端侧和网络侧协同设计和深度融合的思路,构建了基于端网融合的新型网络传输协议、拥塞控制算法、多路径智能化调度、以及芯片、硬件深度定制和卸载等技术的全新算网体系。可预期网络能够大幅度提升分布式并行计算的网络通信效率,从而构建高效的算力资源池,实现了云上大算力的弹性供给。云计算重新定义的可预期网络技术体系,将对产业链上下游、芯片技术演进产生深远影响,成为算力普惠化的新范式。

算力网络的发展正在经历从 0 到 1的过程,需要互联网科技公司和运营商共同定义。如果将算力网络作为未来的关键基础设施,它将对网络可预期性提出更高的要求。数字化社会下的算力普惠,将持续驱动数据中心网络向高性能、资源池化的云计算方向发展,这将使网络可预期技术在未来2-3年内发生质变,逐渐成为主流技术趋势。

趋势七、双引擎智能决策

融合运筹优化和机器学习的双引擎智能决策,将推进全局动态资源配置优化。

摘要:

企业需在纷繁复杂、动态变化的环境中快速精准地做出经营决策。经典决策优化基于运筹学,通过对现实问题进行准确描述来构建数学模型,同时结合运筹优化算法,在多重约束条件下求目标函数最优解。随着外部环境复杂程度和变化速度不断加剧,经典决策优化对不确定性问题处理不够好、大规模求解响应速度不够快的局限性日益突显。学术界和产业界开始探索引入机器学习,构建数学模型与数据模型双引擎新型智能决策体系,弥补彼此局限性、提升决策速度和质量。未来,双引擎智能决策将进一步拓展应用场景,在大规模实时电力调度、港口吞吐量优化、机场停机安排、制造工艺优化等特定领域推进全局实时动态资源配置优化。

趋势解读:

近年来,全球性突发事件(如疫情、战争、技术管制等)频繁出现,使得外部环境变得更加复杂、不确定性更高;同时,市场不断变化、要求不断提升。企业需在纷繁复杂、动态变化的环境中,快速精准地做出经营决策。

智能决策是综合利用多种智能技术和工具,基于既定目标,对相关数据进行建模、分析并得到最优决策的过程。该过程将约束条件、策略、偏好、目标等因素转化为数学模型,并利用智能技术自动实现最优决策,旨在解决日益复杂、动态变化的经营决策问题(如打车平台派单、充电桩选址、生产排程等问题)。

经典决策优化基于运筹学,起源于二战中的空战规划。它通过对现实问题进行准确描述刻画来构建数学模型,同时结合运筹优化算法,在多重约束条件下求目标函数最优解。基于运筹学的决策优化对数据量的依赖性弱、求解质量较高、可解释性较强,被广泛运用于各类决策场景。

随着外部环境复杂程度和变化速度不断加剧,经典决策优化的局限性愈发突现,主要体现在:一是对于不确定性问题的处理能力不足,二是对大规模问题响应不够迅速。学术界和产业界开始探索引入机器学习,构建数学模型与数据模型双引擎新型智能决策体系。机器学习基于数据驱动模型,模拟出近似解区域,缩小经典方式求解空间,可大幅提升求解效率。机器学习的优势在于可应对不确定性高、在线响应速度快的场景;劣势为学习效率慢、成本高,且求解的质量不够高。由此可以看出,运筹优化和机器学习的结合完美弥补了彼此局限性,极大地提升了决策速度和质量。

双引擎智能决策尚处于起步阶段。众多决策优化场景(如交通领域港口吞吐量优化、机场停机安排等,制造领域工艺优化、产销协同等),开始尝试用双引擎方式在动态变化中快速找到最优解。最典型的、也最具挑战的场景是电力调度场景。电力调度场景转化为智能决策问题可描述为:

● 目标:在满足电网安全稳定运行前提下,降低购电成本或者实现全社会福利最大化,并促进新能源消纳。

● 约束条件:1)必须满足所有安全约束 ,包括节点电压、线路与断面热稳定限额;2)发用电负荷平衡约束;3)满足物理特性 , 如机组爬坡、开停机曲线、梯级水电等。

● 决策难点:1)调度业务非常复杂,涉及海量决策数据 : 目前省级变量与约束达千万级别 ; 随着新能源快速装机以及引入负荷侧参与调节,直到实现双碳目标全网变量与约束预计将超过十亿级;2)新能源发电占比将越来越大,其波动性和随机性将对模型驱动的数学优化效率带来极大挑战;3)机器学习难以保证满足所有安全约束。双引擎智能决策将机器学习与底层优化技术深度耦合在了一起,在满足各类安全约束条件的情况下,将计算效率提高10 倍以上,有望实现秒级调度优化,突破新型电力系统电网调度追风、逐日决策的性能瓶颈。

未来,双引擎智能决策将进一步拓展应用场景,在特定领域实现更多主体、更大范围的资源配置优化,进而推进全局实时动态的资源配置优化。

趋势八、计算光学成像

计算光学成像突破传统光学成像极限,将带来更具创造力和想象力的应用。

摘要:

计算光学成像是一个新兴多学科交叉领域。它以具体应用任务为准则,通过多维度获取或编码光场信息(如角度、偏振、相位等),为传感器设计远超人眼的感知新范式;同时,结合数学和信号处理知识,深度挖掘光场信息,突破传统光学成像极限。目前,计算光学成像处于高速发展阶段,已取得许多令人振奋的研究成果,并在手机摄像、医疗、无人驾驶等领域开始规模化应用。未来,计算光学成像有望进一步颠覆传统成像体系,带来更具创造力和想象力的应用,如无透镜成像、非视域成像等。

趋势解读:

传统光学成像建立在几何光学基础上,借鉴人眼视觉“所见即所得”的原理,而忽略了诸多光学高维信息。当前传统光学成像在硬件功能、成像性能方面接近物理极限,在众多领域已无法满足应用需求。例如 ,在手机摄影领域,无法在保证成像效果的同时缩小器件重量和体积,出现令人诟病的“前刘海”和“后浴霸”的情况;在显微成像领域,无法同时满足宽视场和高分辨率的需求;在监控遥感领域,难以在光线较暗、能见度较低的复杂环境中获得清晰图像……

随着传感器、云计算、人工智能等新一代信息技术的不断演进,新型解决方案逐步浮出水面——计算光学成像。计算光学成像以具体应用任务为准则,通过多维度获取或编码光场信息(如角度、偏振、相位等),为传感器设计远超人眼的感知新范式;同时,结合数学和信号处理知识,深度挖掘光场信息,突破传统光学成像极限(如图1 所示)。

计算光学成像是一个新兴多学科交叉领域 , 早期概念在上个世纪 70 年代中期才逐步形成。随着信息技术的蓬勃发展,计算光学成像已成为国际研究热点。由于计算光学成像研究内容覆盖范围广,目前还没有一个比较明确的分类方法。

按照计算成像技术所解决的应用问题来分类,可以大致分为以下三类:(1)功能提升:对传统方式无法获取的光学信息,如光场、偏振、相干度等进行成像或测量;(2)性能提升:即提升现有成像技术的性能指标,如空间分辨率、时间分辨率、景深、复杂环境鲁棒性等;(3)简化与智能化:通过单像素、无透镜等特定技术简化成像系统,或者以光速实现特定人工智能任务(如图 2 所示)。

计算光学成像技术现处于高速发展阶段,还需克服诸多挑战:首先,需以传感器为中心重新设计光学系统;其次,由于需要获取多维度光学信息,需引入新型光学器件和光场调控机制,随之而来的是更多的硬件成本和研发 / 调试时间成本;再次,为了使计算成像硬件和软件有更好的协同,则需重新开发算法工具;最后,对算力要求非常高,对应用设备芯片及其适配性提出更高要求。

计算光学成像虽然是一个新兴技术,但已取得了很多令人振奋的研究成果(2014 诺贝尔奖——超分辨荧光显微成像、2017 年诺贝尔奖——冷冻电镜),并在手机摄像、医疗、监控、工业检测、无人驾驶等领域开始规模化应用。如在手机摄像领域,主流手机厂商均初步融入了计算光学成像思路,从比拼硬件光学,转而追求硬件加算法的协同;目前手机摄像在相当一部分场景的拍摄效果达到、甚至超过一般单反相机。

未 来, 计 算 光 学 成 像 将 进 一 步 颠覆传统成像体系,带来更具创造力和想象力的应用。元成像芯片可实现大范围无像差三维感知,有望彻底解决手机后置摄像头突出的问题。无透镜成像(FlatCam)能够简化传统基于透镜的相机成像系统,进一步减小成像系统体积并有望用于各类可穿戴设备。此外,利用偏振成像技术能够透过可见度不高的介质清晰成像,实现穿云透雾。还有非视域成像,能够通过记录并解析光传播的高速过程来对非视域下目标进行有效探测,实现隔墙而视,在反恐侦察、医疗检测等领域具有广泛的应用价值。

趋势九、大规模城市数字孪生

城市数字孪生在大规模趋势基础上,继续向立体化、无人化、全局化方向演进。

摘要:

城市数字孪生自 2017 年首度被提出以来,受到广泛推广和认可,成为城市精细化治理的新方法。近年来,城市数字孪生关键技术实现了从量到质的突破,具体体现在大规模方面,实现了大规模动态感知映射(更低建模成本)、大规模在线实时渲染(更短响应时间),以及大规模联合仿真推演(更高精确性)。目前,大规模城市数字孪生已在交通治理、灾害防控、双碳管理等应用场景取得较大进展。未来城市数字孪生将在大规模趋势的基础上,继续向立体化、无人化、全局化方向演进。

趋势解读:

城市数字孪生自2017 年首度被提出以来,受到广泛推广和认可。我们持续追踪城市数字孪生进展,分别在 2019 年及 2021 年的十大科技趋势报告中进行了详细阐述。近年来,中央部委多角度全方位出台数字孪生城市相关政策,旨在进一步推进城市精细化治理新方法。

城市数字孪生旨在以城市为对象,在数字世界建设与物理世界 1:1 的数字映射,进而通过数字映射进行多学科机理与仿真推演,并与物理世界进行实时双向同步。近两年,精准映射、生成渲染、仿真推演等城市数字孪生关键技术实现了从量到质的突破,具体体现在大规模上,分别实现了大规模动态感知映射、大规模在线实时渲染,以及大规模联合仿真推演。

在精准映射方面,与耗人、耗时、耗财力的传统测量测绘方式不同,综合运用遥感、雷达、视觉、定位及其它多种传感器及存量测绘数据,以更低成本实现对城市静态部件,以及动态对象(如人、车等)进行位置、状态等多属性实时感知。未来,通过汇聚城市天空地多维度、各类型传感器数据,再结合 AI 感知能力,可融合提取同一实体的多源异构数据、构建多个实体之间的内在关系,在数字世界中进行大规模、低成本、统一、实时、精准的映射表达。

在生成渲染方面,基于精准映射的数 据 基 础, 结 合 AIGC(AI Generated Content)与 游 戏 大 世 界 生 成 PGC(Professional Generated Content) 等技术能力,可实现分层次、分尺寸、多分辨率城市级三维场景模型的自动化生成,以及支持多人在线、互动式大规模实时渲染。

在仿真推演方面,将多学科、大规模的机理与仿真模型联合作用于同一数字大世界,形成“仿真机理元宇宙”,构建虚实互动、双向调控机制。关键技术包括:1)仿真系统云原生化,基于云原生超算调度和求解器,可大幅缩短仿真计算时间,实现城市级场景、百万级以上实体规模实时计算响应;2)统一接口融合计算,多种机理模型及仿真模型能进行实时融合计算,形成多仿真联合服务能力。

在技术推动和需求牵引的共同作用下,大规模城市数字孪生已在交通治理、灾害防控、双碳管理等应用场景取得较大进展。如在交通治理方面,在城市高精路网、水网、河道、车辆等实体三维建模及实时渲染的基础上(建模成本降低 90%+、时间从数月缩短到数天),通过联合道路交通流、城市内涝积水、自动驾驶、人群移动等仿真模型,实现对城市大型活动现场人群疏散引导、交通管控策略、天气情况影响、公共交通供给等全方位策略预案的孪生演练与效果评估(针对应急事态做到“ 1 分钟启动预案 ”、“ 5 分钟到达现场 ”;大型赛事“ 1 小时疏散 ”)。

基于数字孪生的智慧城市市场空间十分广阔。据 IDC 预测,到 2025 年智慧城市投资规模将超过千亿美元,5 年复合增长率超过 30%。目前,城市数字孪生面临的最大瓶颈,在于城市级大规模对象实体孪生以及业务流程孪生的城市孪生体尚未完全搭建起来。城市数字孪生将在大规模特征的基础上,继续向立体化、无人化、全局化方向演进。未来,城市数字孪生既作为城市立体化综合无人系统(无人车、无人机、机器人等)的研发测试环境,同时也是实现全局感知、全局调度的支撑系统。

趋势十、生成式 AI

生成式AI进入应用爆发期,将极大地推动数字化内容生产与创造。

摘要:

生成式 AI(Generative AI 或 AIGC)是利用现有文本、音频文件或图像创建新内容的技术。过去一年,其技术上的进展主要来自于三大领域:图像生成领域, 以 DALL·E-2、Stable Diffusion 为代表的扩散模型(Diffusion Model);自然语言处理(NLP)领域基于 GPT-3.5的 ChatGPT;代码生成领域基于 Codex的 Copilot。现阶段的生成式 AI 通常被用来生成产品原型或初稿,应用场景涵盖图文创作、代码生成、游戏、广告、艺术平面设计等。未来,生成式 AI 将成为一项大众化的基础技术,极大的提高数字化内容的丰富度、创造性与生产效率,其应用边界也将随着技术的进步与成本的降低扩展到更多领域。

趋势解读:

生成式 AI 使用各种机器学习算法,从数据中学习要素,使机器能够创建全新的数字视频、图像、文本、音频或代码等内容。它创建出的内容与训练数据保持相似,而非复制。它的发展得益于近年来大模型在基础研究尤其是深度学习上的突破,真实数据的积累和计算成本的下降。在过去的这一年,生成式 AI 将人工智能的价值聚焦到“创造”二字,这标志着人工智能开始具备定义和呈现新事物的能力。过去一年,生成式 AI 的进展主要体现在如下领域:

图像生成领域的进展来自扩散模型(Diffusion model) 的 应 用, 以 DALL·

E-2、Stable Diffusion 为代表。扩散模型是一种从噪声中生成图像的深度学习技术。扩散模型技术的背后,是更精准理解人类语义的预训练模型、以及文本与图像统一表示模型(CLIP)的支撑。它的出现,让图像生成变得更具想象力。

自然语言处理(NLP)领域的进展来自于基于 GPT3.5 的 ChatGPT(Generative Pre-trained Transformer)。这是一种基于互联网可用数据训练的文本生成深度学习模型,用于问答、文本摘要生成、机器翻译、分类、代码生成和对话 AI。得益于文本和代码相结合的预训练大模型的发展,ChatGPT 引入了人工标注数据和强化学习(RLHF)来进行持续训练和优化。加入强化学习后,大模型能够理解人类的指令以及背后的含义,根据人类反馈来判断答案的质量,给出可解释的答案,并对于不合适的问题给出合理的回复,形成一个可迭代反馈的闭环。

代码生成领域的进展来自代码生成系统 AlphaCode和 Copilot。2022 年 2 月,Deepmind 推出了他们的最新研究成果AlphaCode。它是一个可以自主编程的系统,在 Codeforces 举办的编程竞赛中,超过了 47% 的人类工程师。这标志着 AI 代码生成系统,首次在编程竞赛中,达到了具有竞争力的水平。基于开源代码训练的Copilot 开始商业化,作为订阅服务提供给开发者,用户可以通过使用 Copilot 自动补全代码。Copilot 作为一个基于大型语言模型的系统,尽管在多数情况下仍需要人工二次修正,但在简单、重复性的代码生成上,将帮助开发者提升工作效率,并给 IDE(集成开发环境)行业带来重大影响。

随着内容创造的爆发式增长,如何做到内容在质量和语义上的可控,成为可控式生成,将是生成式 AI 面临的主要挑战。在产业化方面,降成本仍是关键挑战。只有像 ChatGPT 这样的大模型训练成本和推理成本足够低,才有可能规模化推广。此外,数据的安全可控、创作版权和信任问题也需要随着产业化加快逐一解决。

未来三年,生成式 AI 将步入技术产品化的快车道,在商业模式上会有更多探索,产业生态也会随着应用的普及逐步完善。届时,生成式 AI 的内容创造能力将达到人类水平。拥有数据、计算能力、产品化经验的大型科技公司将成为生成式 AI 落地的主要参与者。基于生成模型的计算基础设施和平台会逐步发展起来,模型变成随手可得的服务,客户不需要部署和运行生成式模型的专业技能就可以使用。生成模型将在交互能力、安全可信、认知智能上取得显著进展,以辅助人类完成各类创造性工作。

编辑:芯智讯-浪客剑   来源:阿里巴巴达摩院

往期精彩文章

英特尔第四代至强来袭:AI性能提升10倍!整体能效提升2.9倍!

传苹果正自研蓝牙+WiFi芯片,目标2025年取代博通产品!

美国芯片法案效应显现:将带动3466亿美元投资,创造34708个职位!

戴尔积极降低对华供应链依赖,多家在华子公司已注销

2022年美国专利申请量排名:台积电/华为/京东方进入前十!IBM申请量大跌44%!

AMD最大芯片发布:集成13个小芯片,1460亿个晶体管,AI性能提升8倍!

HPE出售新华三49%股权,紫光股份将100%控股!

华为5G小基站拆解:美国零部件占比已降至1%!

黄章等股东退出!李书福拿下魅族科技100%股权!

15.9亿元!比亚迪半导接盘原紫光成都存储器制造基地

魏少军:中国半导体产业未来的五大预判!

行业交流、合作请加微信:icsmart01
芯智讯官方交流群:221807116

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存