重磅!《中国迈向新一代人工智能》全文来了
Fei Wu, Cewu Lu, Mingjie Zhu, Hao Chen, Jun Zhu, Kai Yu, Lei Li, Ming Li, Qianfeng Chen, Xi Li, Xudong Cao, Zhongyuan Wang, Zhengjun Zha, Yueting Zhuang, Yunhe Pan, Towards a new generation of artificial intelligence in China, Nature Machine Intelligence, Vol 2, 2020 ,312–316
通讯作者:潘云鹤;吴飞、卢策吾和朱明杰共同一作, 其他作者以字母序进行排序.
中国《新一代人工智能发展规划》不仅包括了人工智能有关的科学研究和技术手段等内容,而且为人工智能人才培养和伦理道德制定提供了指导,以培育人工智能生态( AI ecosystem)。
目前,在大学、政府和产业之间正在形成一种协作创新体系,以推动新一代人工智能发展。
人工智能是类似于内燃机或电力的一种“使能”技术,具有赋能其他技术的潜力。表1列出了推动社会经济发展的人工智能平台。
国家平台 | 任务 | 企业/地方政府 |
国家新一代人工智能开放创新平台 (15个) | 聚焦人工智能重点细分领域,充分发挥行业领军企业、研究机构的引领示范作用,整合技术资源、产业链资源和金融资源,持续输出人工智能核心研发能力和服务能力的重要创新载体。 | 自动驾驶(百度)、城市大脑(阿里云)、医疗影像(腾讯)、智能语音(科大讯飞公司)、智能视觉(商汤集团)、视觉计算(上海依图)、营销智能(明略科技)、基础软硬件(华为)、普惠金融(中国平安)、视频感知(海康威视)、智能供应链(京东),图像感知(旷视)、安全大脑(360)、智慧教育(好未来)、智能家居(小米) |
国家新一代人工智能创新发展试验区 (11个) | 发挥地方主体作用,在体制机制、政策法规等方面先行先试,形成促进人工智能与经济社会发展深度融合的新路径,探索智能时代政府治理的新方式,推动新一代人工智能健康发展 | 北京、上海、合肥、杭州、深圳、天津、德清(2300多个县域中唯一一个)、重庆、成都、西安、济南 |
人工智能创新应用 先导区 | 定位于攻破难点、痛点的“先锋队”,定位于探索新机制新方法的“试验田”,定位于培养产业发展的“主力军”。鼓励新技术新产品先行先试,着力夯实技术-产业系统迭代发展的基础 | 上海(浦东新区)、深圳、济南-青岛 |
表1 新一代人工智能若干平台
本节从互联网消费、自主驾驶、智能医疗和智能物联四个方面介绍人工智能赋能社会经济发展。❀ 互联网消费
在中国,人工智能技术被广泛应用于日常生活中,比如本地企业和金融服务。消费者通过在其智能手机上安装的一系列应用程序来获得人工智能和机器学习技术所带来的便利。例如,很多人都熟悉支付宝、美团或大众点评等交易型“超级应用程序”,它们融合了各种生活方式服务,将数亿客户与本地企业联系起来。这些应用程序改变了中国城市亿万人民的生活,加快了餐饮、酒店住宿和电影票等服务的预订和交付。例如,每天有超过60万的外卖配送人员平均在30分钟内完成食品配送订单。这么高的效率得益于强大而智能的调度系统,该系统每小时计算30亿条路线计划,以优化“外卖小哥”的配送量和配送时间[10]。在金融领域,随着在线消费信贷服务和微信支付/支付宝等应用的兴起,中国消费信贷市场规模迅速增长,截至2018年底,中国市场消费信贷余额已超过8.45万亿元人民币,授权信用卡总额度超过14万亿[11]。但与此同时,消费信贷行业面临着信用数据缺乏(中国60%以上的人口缺乏信用记录)、风险管理薄弱、运营服务效率低下等问题。在这些在线信贷服务或应用程序中,人工智能通过处理互联网的大数据,采用先进的算法来提高金融服务决策的质量和运营效率。例如,通过深度学习方法利用序列行为数据和社交网络关系中同质效应来识别群体欺诈攻击;利用深度语义模型从多角度的大数据中理解客户的需求与使用度,以提高客户服务的效率和运营的安全性。此外,人工智能技术已经改变了人们与有价值的信息和内容(包括文本、图像、音频或视频)的联系方式。截至2018年底,中国移动用户已达11.7亿,普及率为82%[12]。大部分人都在使用智能手机和时下流行的移动应用程序(例如、抖音、爱奇艺、腾讯视频、头条、快手和微博)进行学习和推荐。大规模推荐算法是信息获取的重要技术之一,由深层神经网络支持的系统每天根据用户兴趣和喜好量身定制数以千计的新兴新闻和视频。例如,中国每天有超过1.2亿人使用今日头条来看新闻、视频和其他内容。在这个过程中,系统实时收集用户反馈,并将其反馈到先进的分布式机器学习算法中,调整模型以用于下一个项目推荐。一些领先的消费者应用程序均是采用人工智能技术来提高信息创建、审核、传播、消费和交互的有效性和效率。 ❀ 自动驾驶据相关统计,全球每年约有130万人死于交通事故,造成的经济损失累计超过6000亿美元[13]。作为世界上人口最密集和拥挤的国家之一,中国有望成为最大但也是最具挑战性的自动驾驶市场。近年来,中国涌现了几家自动驾驶初创公司,其使命是开发可以挽救生命并提高效率的自动驾驶解决方案。要在不断变化的各种环境(包括地理、天气、交通、不同使用场景等)中部署自动驾驶解决方案,需要灵活易扩展、可升级的算法。充足的感知数据、高清地图、驾驶行为和脱离事件是开发此类解决方案的先决条件。业界通常将自动驾驶产品分为量产/ ADAS(高级驾驶辅助系统)解决方案和完全自主/ AV(自动驾驶)解决方案。利用数据驱动的算法和算法管路改进可实现量产和完全自主两个领域的相互促进。只有两个领域共享主要传感器和数据时才能实现协同效应。在完全自主技术成熟之前,可通过一系列的ADAS功能来获取所需的数据。在ADAS领域中,从各种设置生成的数据将成为不断发展和改进完全自主驾驶解决方案的基础。通过使用人工智能技术同时解决这两个领域的问题,汽车公司将加快开发灵活易扩展、升级更新快的自动驾驶解决方案,以满足未来的移动需求。 ❀ 智能医疗作为世界上人口最多的国家,中国有潜力成为最大的人工智能医疗市场。近年来,中国已有100多家人工智能医疗初创公司成立,涉及医疗影像分析、药物发现、手术机器人和临床决策支持系统等多个领域。其中,大多数公司专注于医疗影像,特别是肿瘤影像学,包括但不限于放射学、病理学和放射疗法。他们的任务是使诊断自动化,辅助医疗决策,并最终改变当前的临床工作流程。癌症在中国已成为主要的死亡原因,因此成为人工智能首先研究的主要领域[14][15]。自2012年以来,在一些特定任务的应用中[16],尤其是在放射线成像[17]和计算病理学[18]领域,深度学习已被证明与人类表现相匹配甚至超越人类[16]。但是,随着深度学习技术的不断发展,医学影像仍然面临着诸多挑战。例如,深度学习需要大量医学数据和精确专家标注知识,以从存在噪声或部分缺失训练数据中训练得到更健壮人工智能模型。这些高质量标注知识必须从有多年经验的专家那里获取,而不是在计算机视觉领由众包获得,这会使得获得高质量标注数据的效率低下,并且我们仍然无法利用大规模的未标记数据集。在这种情况下,弱监督或半监督学习可以为这一挑战提供替代解决方案[19]。在利用大规模多中心医疗数据时,还必须考虑数据孤岛和患者隐私,具有协同机制的联邦学习无需集中培训数据,因此有望克服这个问题[20][21]。迄今为止,国内已有数十种医疗AI产品成功投入临床试验,如CT扫描肺结节检测、根据眼底照片筛查糖尿病视网膜病变以及根据宫颈涂片筛查宫颈癌等。随着数字化过程更为标准以及大规模医疗数据不断涌现,医生和人工智能研究人员之间的密切合作将把人工智能辅助系统引入临床工作流程,成为医生的重要辅助工具,并最终改善患者管理。 ❀ 物联网对话式人工智能在中国,目前数以亿计的智能硬件构成了物联网,用于每天的信息访问[22]。语音和语言是人与智能硬件进行信息交换的自然选择。因此,对话式人工智能引起了工业界和学术界的极大兴趣。百度等巨头公司和思必驰等新兴人工智能公司都在积极构建全链对话式人工智能平台,目标是构建可定制的虚拟对话助手,为所有可能的智能物联网设备提供支持。这是一个非常具有挑战性的研究方向。对话式人工智能主要是对语音对话系统(SDS)进行研究。面向特定任务语音对话系统是最感兴趣的研究点,问答对话或聊天是当下流行的研究。在未来的几年里,中国在工业界和学术界可能会出现下述三种趋势。首先,复杂声学环境和非合作交互场景中的感知技术将成为研究的重点,例如多个话者同时交流场景中语音识别。其次,上下文相关语言理解和对话决策会成为热点。在这方面,数据驱动模型和知识引导方法相互结合是潜在的有效方法。另一方面,统计对话策略成功使用会使面向特定任务的对话助手在为人类服务时能够不断自我学习进化。最后,对话概念将从基于语音扩展到多模态(跨媒体),能够同时处理语音数据和视觉信息的智能算法将广泛应用于各种形式的智能硬件中。
01
参考文献
1. China issues guideline on artificial intelligence development. Gov.cn, http://english.gov.cn/policies/latest_releases/2017/07/20/content_281475742458322.htm (2017).
2. Pan, Y. Heading toward artificial intelligence 2.0. Engineering 2,409–413 (2016).
3. Pan, Y.-h. Special issue on artificial intelligence 2.0. Front. Inform. Technol.Electron. Eng. 18, 1–2 (2017).
4. Pan, Y.-h. Special issue on artificial intelligence 2.0: theories and applications. Front. Inform. Technol. Electron. Eng. 19, 1–2 (2018).
5. Zhuang, Y.-t., Wu, F., Chen, C. & Pan, Y.-h. Challenges and opportunities: from big data to knowledge in AI 2.0. Front. Inform. Technol. Electron. Eng. 18, 3–14 (2017).
6. Peng, Y.-x et al. Cross-media analysis and reasoning: advances and directions. Front. Inform. Technol. Electron. Eng. 18, 44–57 (2017).
7. Li, W. et al. Crowd intelligence in AI 2.0 era. Front. Inform. Technol. Electron. Eng. 18, 15–43 (2017).
8. Zheng, N.-n et al. Hybrid-augmented intelligence: collaboration and cognition. Front. Inform. Technol. Electron. Eng. 18, 153–79 (2017).
9. Zhang, T. et al. Current trends in the development of intelligent unmanned autonomous systems. Front. Inform. Technol. Electron. Eng. 18, 68–85 (2017).
10. Fisk, P. Meituan Dianping: China’s everything-app to “eat better, live better”. Gamechangers https://www.thegeniusworks.com/gamechanger/meituan-dianping/ (2019).
11. China’s consumer credit balance expected to exceed 10t yuan by 2020. China Banking News http://www.chinabankingnews.com/2019/01/21/chinas-consumer-credit-balance-expected-to-exceed-10t-yuan-by-2020/ (2019).
12. The Mobile Economy 2020 (GSMA Intelligence, 2020)
13. Global Status Report on Road Safety 2018 (World Health Organization, 2018).
14. Chen, W. et al. Cancer statistics in China, 2015. CA: Cancer J. Clin. 66, 115–132 (2016).
15. Bi, W. L. et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA: Cancer J. Clin. 69, 127–157 (2019).
16. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015)
17. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H. & Aerts, H. J. W. L. Artificial intelligence in radiology. Nat. Rev. Cancer 18, 500–510 (2018).
18. Bejnordi, B. E. et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318, 2199–2210 (2017).
19. Papandreou, G. et al. Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In Proc. IEEE Int. Conf. Computer Vision 1742–1750 (IEEE, 2015).
20. Bonawitz, K. et al. Towards federated learning at scale: system design. Preprint at https://arxiv.org/abs/1902.01046 (2019).
21. Song, J. et al. IEEE Trans. Neural Netw. Learn. Syst. https://doi.org/10.1109/ tnnls.2020.2989364 (2020).
22. Growing IoT in China (GSMA, 2019).
23. Zhuang, Y. et al. The next breakthroughs of artificial intelligence: the interdisciplinary nature of AI. Engineering 6, 245–247 (2020)
24. Wu, W., Huang, T. & Gong, K. Ethical principles and governance technology development of AI in China. Engineering 6, 302–309 (2020).
25. Amini, A. Soleimany, A. P., Schwarting, W., Bhatia, S. N. & Rus, D. Uncovering and mitigating algorithmic bias through learned latent structure. In Proc. 2019 AAAI/ACM Conf. AI, Ethics, and Society 289–295 (ACM, 2019).
26. Papernot, N., Abadi, M., Erlingsson, U., Goodfellow, I. J. & Talwar, K. Semi-supervised knowledge transfer for deep learning from private training data. In 5th Int. Conf. Learning Representations (ICLR, 2017).
27. China AI Development Report 2018 (Tsinghua Univ., 2018).
28. Lv, Y.-G. Artificial intelligence: enabling technology to empower our society. Engineering 6, 205–206 2020).
29. Roberts, H. et al. The Chinese approach to artificial intelligence: an analysis of policy and regulation. Preprint at https://doi.org/10.2139/ssrn.3469784 (2019).
热门内容
👇👇👇