神奇的一行代码,让 Python 轻松跑赢 C++
The following article is from Python七号 Author somenzz
Python
是动态语言,有全局解释器锁,比其他静态语言要慢,也正是这个原因,你也许会转向其他语言如 Java、C++
,不过先等等,今天分享一个可以让 Python 比 C++ 还要快的技术,看完再决定要不要转吧。今天的主角就是 Numba
,Numba 是一个开源的即时编译器(JIT compiler
),可将 Python 和 NumPy 的代码的转换为快速的机器码,从而提升运行速度。可以达到 C
或 FORTRAN
的速度。
这么牛逼是不是很难用呢?No,No,No,So easy,你不需要替换 Python 解释器,不需要单独编译,甚至不需要安装 C / C ++
编译器。只需将 Numba 提供的装饰器放在 Python 函数上面就行,剩下的就交给 Numba 完成。举个简单的例子:
from numba import jit
import random
@jit(nopython=True)
def monte_carlo_pi(nsamples):
acc = 0
for i in range(nsamples):
x = random.random()
y = random.random()
if (x ** 2 + y ** 2) < 1.0:
acc += 1
return 4.0 * acc / nsamples
Numba 是专为科学计算而设计的,在与 NumPy 一起使用时,Numba 会为不同的数组数据类型生成专门的代码,以优化性能:
@numba.jit(nopython=True, parallel=True)
def logistic_regression(Y, X, w, iterations):
for i in range(iterations):
w -= np.dot(((1.0 /
(1.0 + np.exp(-Y * np.dot(X, w)))
- 1.0) * Y), X)
return w
现在我们来看看,同样的代码,使用 Numba 前后与 C++ 的性能对比。比如说我们要找出 1000 万以内所有的素数,代码的算法逻辑是相同的:
import math
import time
def is_prime(num):
if num == 2:
return True
if num <= 1 or not num % 2:
return False
for div in range(3, int(math.sqrt(num) + 1), 2):
if not num % div:
return False
return True
def run_program(N):
total = 0
for i in range(N):
if is_prime(i):
total += 1
return total
if __name__ == "__main__":
N = 10000000
start = time.time()
total = run_program(N)
end = time.time()
print(f"total prime num is {total}")
print(f"cost {end - start}s")
执行耗时:
total prime num is 664579
cost 47.386465072631836s
C++ 代码如下:
#include <iostream>
#include <cmath>
#include <time.h>
using namespace std;
bool isPrime(int num) {
if (num == 2) return true;
if (num <= 1 || num % 2 == 0) return false;
double sqrt_num = sqrt(double(num));
for (int div = 3; div <= sqrt_num; div +=2){
if (num % div == 0) return false;
}
return true;
}
int run_program(int N){
int total = 0;
for (int i; i < N; i++) {
if(isPrime(i)) total ++;
}
return total;
}
int main()
{
int N = 10000000;
clock_t start,end;
start = clock();
int total = run_program(N);
end = clock();
cout << "total prime num is " << total;
cout << "\ncost " << (end - start) / ((double) CLOCKS_PER_SEC) << "s\n";
return 0;
}
$ g++ isPrime.cpp -o isPrime
$ ./isPrime
total prime num is 664579
cost 2.36221s
C++ 确实牛逼,才 2.3 秒,不过好戏还在后头,现在我们使用 Numba 来加速一下,操作很简单,不需要改动原有的代码,先导入 Numba 的 njit,再在函数上方放个装饰器 @njit
即可,其他保持不变,代码如下:
import math
import time
from numba import njit
# @njit 相当于 @jit(nopython=True)
@njit
def is_prime(num):
if num == 2:
return True
if num <= 1 or not num % 2:
return False
for div in range(3, int(math.sqrt(num) + 1), 2):
if not num % div:
return False
return True
@njit
def run_program(N):
total = 0
for i in range(N):
if is_prime(i):
total += 1
return total
if __name__ == "__main__":
N = 10000000
start = time.time()
total = run_program(N)
end = time.time()
print(f"total prime num is {total}")
print(f"cost {end - start}s")
运行一下,可以看出时间已经从 47.39 秒降低到 3 秒。
total prime num is 664579
cost 3.0948808193206787s
相比 C++ 的 2.3 秒还是有一点慢,你可能会说 Python 还是不行啊。等一等,我们还有优化的空间,就是 Python 的 for 循环,那可是 1000 万的循环,对此,Numba 提供了 prange 参数来并行计算,从而并发处理循环语句,只需要将 range 修改为 prange,装饰器传个参数:parallel = True,其他不变,代码改动如下:
import math
import time
from numba import njit, prange
@njit
def is_prime(num):
if num == 2:
return True
if num <= 1 or not num % 2:
return False
for div in range(3, int(math.sqrt(num) + 1), 2):
if not num % div:
return False
return True
@njit(parallel = True)
def run_program(N):
total = 0
for i in prange(N):
if is_prime(i):
total += 1
return total
if __name__ == "__main__":
N = 10000000
start = time.time()
total = run_program(N)
end = time.time()
print(f"total prime num is {total}")
print(f"cost {end - start}s")
现在运行一下:
$ python isPrime.py
total prime num is 664579
cost 1.4398791790008545s
才 1.43 秒,比 C++ 还快,Numba 真的牛逼!我又运行了两次,确认自己没看错,平均就是 1.4 秒:
看到这里,Numba 又让我燃起了对 Python 的激情,我不转 C++ 了,Python 够用了。
Numba
如何做到的呢?官方文档这样介绍:它读取装饰函数的 Python 字节码,并将其与有关函数输入参数类型的信息结合起来,分析和优化代码,最后使用编译器库(LLVM)针对你的 CPU 生成量身定制的机器代码。每次调用函数时,都会使用此编译版本,你说牛逼不?
Numba
还有更多详细的用法,这里不多说,想了解的请移步官方文档。
最后的话
Python 几乎在每一个领域都有对应的解决方案,本文提到的 Numba 库就是专门解决 Python 在计算密集型任务方面性能不足的问题,如果你从事机器学习、数据挖掘等领域,这个会非常有帮助。
- EOF -
觉得本文对你有帮助?请分享给更多人
推荐关注「Python开发者」,提升Python技能
点赞和在看就是最大的支持❤️