【IJAC推文】帝国理工郭毅可·最小偏相关法画出“神经指纹”
图片来自网络
人脑功能连接已成为一个极具前景的研究课题。自2009年,美国国立卫生院便开始斥巨资支持人类连接组项目((Human Connectome Project),包括哈佛大学、麻省总医院在内的多个美国顶级大学及研究所参与其中。
2015年,《Nature Neuroscience》曾发表过一篇文章,证实每个人的大脑都是独特的,大脑神经连接存在着特异性。一些大脑功能区,例如调控基本视觉、运动技能的脑区域,绝大多数人的神经回路都以相似的模式连接。但是,其他区域,例如额叶,似乎存在个体差异。借助这种特异性,研究人员能够成功找出同一受试者在不同时间的大脑活动扫描成像,即便受试者在不同的时间从事着不同的任务。“神经指纹”有望成为一种新型诊断工具。
图片来自网络
当前,在研究脑功能连接时,应用最广泛的计算方法是Pearsons correlation,但这一方法无法区分直接效应和间接效应。因此,研究者通常会先控制其他所有区域,然后选取两个区域,进行偏相关系数计算,而这又会出现Berkson’s paradox。除此之外,还有一些改进后的方法,如regularised inverse covariance。然而,这些方法通常还需借助参数才能实现。
图片来自文章
今年6月,IJAC在线发表了由英国帝国理工终身教授、上海大学计算机学院院长郭毅可教授及其研究团队的研究成果。该研究采用最小偏相关法来构建机能性核共振成像(fMRI)中的脑功能连接图,无需参数即可实现。通过控制其他区域所有可能的子集,最终,两区域间的最小偏相关系数就是偏相关系数绝对值的最小值。
图片来自SpringerLink
理论上,在保证忠实性的前提下,当且仅当最小偏差系数非零时,基于高斯假设,可得出两区域间的直接效应。文章设计出一种弹性PC算法(elastic PC-algorithm),在时间预算范围内,可有效接近最小偏差系数。仿真结果表明,文章所提出的方法在大多数情况下优于其他方法,通过人类连接组项目中的静息状态功能磁共振成像数据集证实,该方法具有很大的应用价值。
图片来自文章
当然,研究者仍需进一步测试最小相关偏差系数的性能,通过开展识别实验保存个体特异性图谱。此外,个体特异性的遗传度也会是功能连接中一个非常有趣的研究点。未来,最小偏差系数还可用于研究大脑功能、行为、基因或疾病相关的课题。作为一个重要的生物标记,在区分精神疾病上,最小偏差系数也必将发挥着特殊作用。
(Ps: 小小编初来乍到,功力尚浅,文中编译不当之处,还请各路大牛后台批评指正^∀^)
“数据科学已经渗入到包括生物科学、医学信息、医疗卫生、社会科学、人文科学以及工程学之中,并深深影响着经济、商业和金融业的发展。数据科学涉及到数据从采集、探索到分析、交流的整个生命周期,已经成为现代跨学科科学研究的核心”
---郭毅可《Big Data for Better Science》
第四届中国科研信息化发展研讨会
本文参考资料:
1.《Nature Neuroscience》
https://www.nature.com/neuro/journal/v18/n11/pdf/nn.4135.pdf
2. 生物秀:
http://www.bbioo.com/news/20151015144368.html
3. 百度百科-人类连接组项目:
https://baike.so.com/doc/7141418-7365024.html
4. 中国教育和科研计算机网:
http://www.edu.cn/info/media/yjfz/yjr/201604/t20160413_1386657.shtml
【Title】
Inferring Functional Connectivity in fMRI Using Minimum Partial Correlation
【Abstract】
Functional connectivity has emerged as a promising approach to study the functional organization of the brain and to define features for prediction of brain state. The most widely used method for inferring functional connectivity is Pearsons correlation, but it cannot differentiate direct and indirect effects. This disadvantage is often avoided by computing the partial correlation between two regions controlling all other regions, but this method suffers from Berksons paradox. Some advanced methods, such as regularised inverse covariance, have been applied. However, these methods usually depend on some parameters. Here we propose use of minimum partial correlation as a parameter-free measure for the skeleton of functional connectivity in functional magnetic resonance imaging (fMRI). The minimum partial correlation between two regions is the minimum of absolute values of partial correlations by controlling all possible subsets of other regions. Theoretically, there is a direct effect between two regions if and only if their minimum partial correlation is non-zero under faithfulness and Gaussian assumptions. The elastic PC-algorithm is designed to efficiently approximate minimum partial correlation within a computational time budget. The simulation study shows that the proposed method outperforms others in most cases and its application is illustrated using a resting-state fMRI dataset from the human connectome project.
【Keywords】
Functional connectivity, functional magnetic resonance imaging (fMRI), network modelling, partial correlation, PCalgorithm, resting-state networks.
【Authors】
Lei Nie: Department of Computing, Imperial College London, UK
Xian Yang: Department of Computing, Imperial College London, UK
Paul M. Matthews: Department of Medicine, Imperial College London, UK
Zhi-Wei Xu: Institute of Computing Technology, Chinese Academy of Sciences, China
Yi-Ke Guo: Department of Computing, Imperial College London, UK & School of Computer Engineering and Science, Shanghai University, China.
【Full Text---Open Access】
https://link.springer.com/article/10.1007/s11633-017-1084-9
【Title】
Flexible robotic grasping strategy with constrained region in environment
【Key words】
Grasping strategy, compliant grasping, dexterous robotic hands, attractive region in environment, constrained region in environment.
【Authors】
Chao Ma, Hong Qiao, Rui Li, Xiao-Qing Li.
【Full Text】
https://link.springer.com/article/10.1007/s11633-017-1096-5
【Title】
Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review
【Key words】
Machine learning, neural networks, deep and shallow networks, convolutional neural networks, function approximation, deep learning.
【Authors】
Tomaso Poggio, Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, Qianli Liao.
【Full Text】
https://link.springer.com/article/10.1007/s11633-017-1054-2
【Title】
Imitating the brain with neurocomputer a “new” way towards artificial general intelligence
【Key words】
Artificial general intelligence (AGI), neuromorphic computing, neurocomputer, brain-like intelligence, imitationalism.
【Author】Tie-Jun Huang
【Full Text】
https://link.springer.com/article/10.1007/s11633-017-1082-y
【Title】
On the centre of mass motion in human walking
【Key words】
Human locomotion, analytical model, centre of mass, locomotion signature, synergies.
【Authors】Justin Carpentier, Mehdi Benallegue, Jean-Paul Laumond
【Full Text】
https://link.springer.com/article/10.1007/s11633-017-1088-5
1) IJAC官方网站:
http://link.springer.com/journal/11633
2) Linkedin: Int. J. of Automation and Computing
3) 新浪微博: IJAC-国际自动化与计算杂志
4) Twitter: IJAC_Journal
5) Facebook: ijac journal
关于杂志或文章,您有任何意见或建议,欢迎后台留言或私信小编
本文编辑:欧梨成
点击“阅读原文",查看全文链接