【IJAC推文】多智能体通信时滞间隔的一致性问题
自然界中的一致性问题 (来自网络)
一致性问题通常存在于多智能体系统中。多智能体系统是由多个可计算的智能体组成的集合,其中每一个智能体是一个物理或抽象的实体,并能通过感应器感知周围的环境,效应器作用于自身,并能与其他智能体进行通讯的实体。
一致性问题(consensus)是多智能体系统理论中不容忽视的问题。所谓的一致性,就是使得系统中的所有智能体的某一状态量或所有状态量趋于相等,每个智能体能够与同一子集中的其他智能体(也称邻居neighbors)分享信息,或从其他智能体得到信息。一致性可以应用到很多领域,比如处理交通堵塞问题、设计水下交通设备等等,还可通过大规模的智能体之间的合作协调来代替昂贵的单个系统(卫星、机器人、无人驾驶飞行器、自治水下潜艇等)完成复杂的任务。
由于信息处理(information processing)、传输信道(transmission channels)、执行器反应时间(time-response of actuators)在计算及物理层面存在一定的限制(computational and physical limitations),故而多智能体交互时(multi-agent interactions)经常会发生时滞现象(time-delays),对系统实现一致性产生重要影响。
2018年2月第1期中,IJAC将发表来自巴西米纳斯联邦大学Heitor Savino教授团队的研究成果:通信时滞间隔的一致性问题。由于通信信道或感应器存在物理限制,一智能体从同一网络中其他智能体处获取信息的时间会发生延迟,进而导致通信时滞(communication delay)。前人的大量研究都集中于解决输入时滞(input delays),且多数将输入时滞等同于通信时滞。不同的是,本文基于一个完全不同的框架,在多智能体网络实现一致性的前提下,着重讨论并得出精确计算通信时滞间隔(communication time-delay intervals)的方法。
文章信息 (来自SpringerLink)
研究发现:通信时滞通常不会对系统实现一致性造成不利影响,相反,还可以促成特定间隔实现一致性。如果多智能体系统在特定时滞间隔实现了一致性,那么,缩短该时滞间隔后将无法达成一致性。文章还得出了一阶动态和二阶动态智能体实现一致性的条件,并基于此设计出了二阶动态智能体网络的一致性协议。
一致性转换分析 (来自文章)
文章提出在高阶动态多智能体系统的有向网络拓扑结构中,识别多智能体实现一致性时通信时滞间隔的流程。通信时滞仅能对二阶或高阶多智能体实现一致性产生影响。此外,对于二阶或高阶智能体而言,增加时滞值并不总会干扰系统实现一致性,但可以使系统在特定间隔实现一致。这就否定了一个人们普遍认为正确的结论,即时滞只会降低系统性能。这一发现也表明研究不同通信时滞间隔下一致性问题的重要性。正如文中例子阐释的那样:如果多智能体系统在特定时滞条件下没有实现一致性,那么,增加时滞或许可以。
Consensus on Intervals of Communication Delay
Heitor J. Savino, Fernando O. Souza, Luciano C. A. Pimenta
Abstract:
This paper brings out a structured methodology for identifying intervals of communication time-delay where consensus in directed networks of multiple agents with high-order integrator dynamics is achieved. It is built upon the stability analysis of a transformed consensus problem which preserves all the nonzero eigenvalues of the Laplacian matrix of the associated communication topology graph. It is shown that networks of agents with first-order integrator dynamics can be brought to consensus independently of communication delay, on the other hand, for agents with second-order integrator dynamics, the consensus is achieved independently of communication delay only if certain conditions are satisfied. Conversely, if such conditions are not satisfied, it is shown how to compute the intervals of communication delay where multiple agents with second-order or higher-order can be brought to consensus. The paper is ended by showing an interesting example of a network of agents with second-order integrator dynamics which is consensable on the first time-delay interval, but as the time-delay increases, it loses consensability on the second time-delay interval, then it becomes consensable again on the third time-delay interval, and finally it does not achieve consensus any more on the fourth time-delay interval. This example shows the importance of analyzing consensus with time-delay in different intervals.
Keywords
Time delay systems, multi-agent systems, consensus, communication delay, roots location.
Full Text
1) SpringerLink:
https://link.springer.com/article/10.1007/s11633-017-1095-6
2) IJAC Website:
http://www.ijac.net/EN/abstract/abstract1930.shtml
IJAC专题
更多精彩内容,欢迎关注
1) IJAC官方网站:
http://link.springer.com/journal/11633
2) Linkedin: Int. J. of Automation and Computing
3) 新浪微博: IJAC-国际自动化与计算杂志
4) Twitter: IJAC_Journal
5) Facebook: ijac journal
关于杂志或文章,您有任何意见或建议,欢迎后台留言或私信小编,对话框回复关键词,自动获取往期更多精彩内容!
本文编辑:欧梨成
点击“阅读原文",进入全文下载