资源|深度学习案例和实验分析视频和ITP课程编码
社群用户来源包含:麻省理工学院 斯坦福大学 牛津大学 卡内基梅隆大学 剑桥大学 加州大学伯克利分校 苏黎世联邦理工学院 新加坡国立大学 普林斯顿大学 多伦多大学 帝国理工学院 墨尔本大学 香港科技大学 加州大学洛杉矶分校 清华大学 洛桑联邦理工学院 香港大学 爱丁堡大学 东京大学 香港中文大学 北京大学 复旦大学 武汉大学 南开大学 中科院等数百所名牌大学的研究生、博士以及教授;NVidia Facebook Line 微软 IBM 谷歌 Bosch Amazon Tesla Motors 百度 华为 英特尔 腾讯 阿里巴巴 蚂蚁金服 科大讯飞 旷视科技 碳云智能 地平线 软银投资 红杉资本等上千家全球一流AI相关企业的工程师以及技术专家。
Machine-Learning
Examples and experiments around ML for upcoming Coding Train videos and ITP course.
Resource attributes
Since resources across the internet vary in terms of their pre-requisites and general accessibility, it is useful to give attributes to them so that it is easy to understand where a resource fits into the wider machine learning scope. Below is a few suggested attributes (please extend):
creative
beginner
intermediate, some pre-requisites
advanced, many pre-requisites
Table of Contents
Articles & Posts:
https://github.com/CodingTrain/Machine-Learning#articles--posts
Courses
https://github.com/CodingTrain/Machine-Learning#courses
Examples
https://github.com/CodingTrain/Machine-Learning#examples
Projects
https://github.com/CodingTrain/Machine-Learning#projects
Videos
https://github.com/CodingTrain/Machine-Learning#videos
Resources
https://github.com/CodingTrain/Machine-Learning#resources
Tools
https://github.com/CodingTrain/Machine-Learning#tools
Tensorflow
https://github.com/CodingTrain/Machine-Learning#tensorflow
t-SNE
https://github.com/CodingTrain/Machine-Learning#t-sne
Articles & Posts
A Return to Machine Learning
https://medium.com/@kcimc/a-return-to-machine-learning-2de3728558eb#.vlqnbo9yg
A Visual Introduction to Machine Learning
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
Machine Learning is Fun!
https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471
Deep Reinforcement Learning: Pong from Pixels
http://karpathy.github.io/2016/05/31/rl/
Inside Libratus, the Poker AI That Out-Bluffed the Best Humans
https://www.wired.com/2017/02/libratus/?%20imm_mid=0ed017&cmp=em-data-na-na-newsltr_ai_20170206
Machine Learning in Javascript: Introduction
http://burakkanber.com/blog/machine-learning-in-other-languages-introduction/
Realtime control of sequence generation with character based Long Short Term Memory Recurrent Neural Networks
http://www.iggi.org.uk/assets/IGGI-2016-Memo-A.pdf
Why is machine learning 'hard'?
http://ai.stanford.edu/%7Ezayd/why-is-machine-learning-hard.html
Unreasonable effectiveness of RNNs
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
Courses
The Neural Aesthetic @ SchoolOfMa, Summer 2016
http://ml4a.github.io/classes/neural-aesthetic/
Machine Learning for Musicians and Artists, Kadenze[Scheduled course]
https://www.kadenze.com/courses/machine-learning-for-musicians-and-artists-i
1. Creative Applications of Deep Learning with TensorFlow, Kadenze[Whole Program]
https://www.kadenze.com/programs/creative-applications-of-deep-learning-with-tensorflow
Coursera - Machine Learning
https://www.coursera.org/learn/machine-learning
Coursera - Neural Networks
https://www.coursera.org/learn/neural-networks
Examples
A Deep Q Reinforcement Learning Demo
http://projects.rajivshah.com/rldemo/
How to use Q Learning in Video Games Easily
https://github.com/llSourcell/q_learning_demo
K-nearest
https://twitter.com/MaximilianLloyd/status/814942799351185408
The Infinite Drum Machine
https://aiexperiments.withgoogle.com/drum-machine/view/
Visualizing the perceptron training algorithm
https://kwichmann.github.io/ml_sandbox/perceptron/
Projects
Bidirectional LSTM for IMDB sentiment classification
https://transcranial.github.io/keras-js/#/imdb-bidirectional-lstm
Land Lines
https://medium.com/@zachlieberman/land-lines-e1f88c745847#.1157xmhw8
nnvis - Topological Visualisation of a Convolutional Neural Network
http://terencebroad.com/convnetvis/vis.html
char-rnn A character level language model (a fancy text generator)
https://github.com/karpathy/char-rnn
Videos
Reinforcement Learning
Artificial Intelligence in Google's Dinosaur (English Sub)
https://www.youtube.com/watch?v=P7XHzqZjXQs
How to use Q Learning in Video Games Easily
https://www.youtube.com/watch?v=A5eihauRQvo&feature=youtu.be
Evolutionary Algorithms
Evolving Swimming Soft-Bodied Creatures
https://www.youtube.com/watch?v=4ZqdvYrZ3ro
Harnessing evolutionary creativity: evolving soft-bodied animats in simulated physical environments
https://www.youtube.com/watch?v=CXTZHHQ7ZiQ&feature=youtu.be
Reproduce image with genetic algorithm
https://www.youtube.com/watch?v=iV-hah6xs2A
Resources
Awesome Machine Learning
https://github.com/josephmisiti/awesome-machine-learning
Tools
ConvNetJS - Javascript library for training Deep Learning models (Neural Networks)
http://cs.stanford.edu/people/karpathy/convnetjs/
RecurrentJS - Deep Recurrent Neural Networks and LSTMs in Javascript
https://github.com/shiffman/recurrentjs
WORD2VEC
http://technobium.com/find-words-similarity-using-deeplearning4j-word2vec/
TensorFlow
Projector
http://projector.tensorflow.org/
Magenta
https://github.com/tensorflow/magenta
TensorFlow and Flask
(https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc#.96tvigb98_)
Thanks to @Hebali basic pipeline, minus TensorFlow plus a very basic placeholder function
http://www.patrickhebron.com/learning-machines/week8.html
Awesome Tensorflow - curated list of TensorFlow tutorials
https://github.com/jtoy/awesome-tensorflow
Tensorflow posts
Big deep learning news: Google Tensorflow chooses Keras
http://www.fast.ai/2017/01/03/keras/
Simple end-to-end TensorFlow examples
http://bcomposes.com/2015/11/26/simple-end-to-end-tensorflow-examples/
t-SNE
t-SNE 😅
https://lvdmaaten.github.io/tsne/
t-SNE 😅
https://scienceai.github.io/tsne-js/
An illustrated introduction to the t-SNE algorithm
https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm
Visualizing Data Using t-SNE 🌈
https://www.youtube.com/watch?v=RJVL80Gg3lA&list=UUtXKDgv1AVoG88PLl8nGXmw
AIjob社
AIjob社:是《全球人工智能》推出的一项免费求职服务。目前与约100家ai企业合作提供近300个工作岗位。有实习,求职和跳槽意向的ai相关开发工程师可发送简历到邮箱:274724446@qq.com
全球人工智能近期经典文章推荐