查看原文
其他

资源|深度学习案例和实验分析视频和ITP课程编码

2017-02-21 全球人工智能

社群用户来源包含:麻省理工学院  斯坦福大学  牛津大学 卡内基梅隆大学  剑桥大学  加州大学伯克利分校  苏黎世联邦理工学院  新加坡国立大学  普林斯顿大学  多伦多大学  帝国理工学院  墨尔本大学  香港科技大学  加州大学洛杉矶分校  清华大学  洛桑联邦理工学院  香港大学  爱丁堡大学  东京大学  香港中文大学  北京大学  复旦大学  武汉大学  南开大学  中科院等数百所名牌大学的研究生、博士以及教授;NVidia  Facebook  Line  微软  IBM  谷歌  Bosch  Amazon  Tesla Motors  百度  华为  英特尔  腾讯  阿里巴巴  蚂蚁金服  科大讯飞  旷视科技  碳云智能  地平线  软银投资  红杉资本等上千家全球一流AI相关企业的工程师以及技术专家。


Machine-Learning


Examples and experiments around ML for upcoming Coding Train videos and ITP course.


Resource attributes


Since resources across the internet vary in terms of their pre-requisites and general accessibility, it is useful to give attributes to them so that it is easy to understand where a resource fits into the wider machine learning scope. Below is a few suggested attributes (please extend):

  • creative

  • beginner

  • intermediate, some pre-requisites

  • advanced, many pre-requisites


Table of Contents


  • Articles & Posts:

  • https://github.com/CodingTrain/Machine-Learning#articles--posts

  • Courses

  • https://github.com/CodingTrain/Machine-Learning#courses

  • Examples

  • https://github.com/CodingTrain/Machine-Learning#examples

  • Projects

  • https://github.com/CodingTrain/Machine-Learning#projects

  • Videos

  • https://github.com/CodingTrain/Machine-Learning#videos

  • Resources

  • https://github.com/CodingTrain/Machine-Learning#resources

  • Tools

  • https://github.com/CodingTrain/Machine-Learning#tools

    • Tensorflow

    • https://github.com/CodingTrain/Machine-Learning#tensorflow

    • t-SNE

    • https://github.com/CodingTrain/Machine-Learning#t-sne


Articles & Posts


  1. A Return to Machine Learning

    https://medium.com/@kcimc/a-return-to-machine-learning-2de3728558eb#.vlqnbo9yg

  2. A Visual Introduction to Machine Learning

    http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

  3. Machine Learning is Fun! 

    https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471

  4. Deep Reinforcement Learning: Pong from Pixels

    http://karpathy.github.io/2016/05/31/rl/

  5. Inside Libratus, the Poker AI That Out-Bluffed the Best Humans 

    https://www.wired.com/2017/02/libratus/?%20imm_mid=0ed017&cmp=em-data-na-na-newsltr_ai_20170206

  6. Machine Learning in Javascript: Introduction 

    http://burakkanber.com/blog/machine-learning-in-other-languages-introduction/

  7. Realtime control of sequence generation with character based Long Short Term Memory Recurrent Neural Networks

    http://www.iggi.org.uk/assets/IGGI-2016-Memo-A.pdf

  8. Why is machine learning 'hard'? 

    http://ai.stanford.edu/%7Ezayd/why-is-machine-learning-hard.html

  9. Unreasonable effectiveness of RNNs

    http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Courses


  1. The Neural Aesthetic @ SchoolOfMa, Summer 2016

    http://ml4a.github.io/classes/neural-aesthetic/

  2. Machine Learning for Musicians and Artists, Kadenze[Scheduled course] 

    https://www.kadenze.com/courses/machine-learning-for-musicians-and-artists-i

    1. Creative Applications of Deep Learning with TensorFlow, Kadenze[Whole Program]

    https://www.kadenze.com/programs/creative-applications-of-deep-learning-with-tensorflow

  3. Coursera - Machine Learning 

    https://www.coursera.org/learn/machine-learning

  4. Coursera - Neural Networks

    https://www.coursera.org/learn/neural-networks


Examples


  1. A Deep Q Reinforcement Learning Demo 

    http://projects.rajivshah.com/rldemo/

  2. How to use Q Learning in Video Games Easily

    https://github.com/llSourcell/q_learning_demo

  3. K-nearest 

    https://twitter.com/MaximilianLloyd/status/814942799351185408

  4. The Infinite Drum Machine

    https://aiexperiments.withgoogle.com/drum-machine/view/

  5. Visualizing the perceptron training algorithm

    https://kwichmann.github.io/ml_sandbox/perceptron/


Projects


  1. Bidirectional LSTM for IMDB sentiment classification

    https://transcranial.github.io/keras-js/#/imdb-bidirectional-lstm

  2. Land Lines

    https://medium.com/@zachlieberman/land-lines-e1f88c745847#.1157xmhw8

  3. nnvis - Topological Visualisation of a Convolutional Neural Network

    http://terencebroad.com/convnetvis/vis.html

  4. char-rnn A character level language model (a fancy text generator)

    https://github.com/karpathy/char-rnn


Videos


  • Reinforcement Learning

  1. Artificial Intelligence in Google's Dinosaur (English Sub) 

    https://www.youtube.com/watch?v=P7XHzqZjXQs

  2. How to use Q Learning in Video Games Easily 

    https://www.youtube.com/watch?v=A5eihauRQvo&feature=youtu.be

  • Evolutionary Algorithms

    1. Evolving Swimming Soft-Bodied Creatures

      https://www.youtube.com/watch?v=4ZqdvYrZ3ro

    2. Harnessing evolutionary creativity: evolving soft-bodied animats in simulated physical environments

      https://www.youtube.com/watch?v=CXTZHHQ7ZiQ&feature=youtu.be

    3. Reproduce image with genetic algorithm 

      https://www.youtube.com/watch?v=iV-hah6xs2A


    Resources


    1. Awesome Machine Learning

      https://github.com/josephmisiti/awesome-machine-learning


    Tools


    1. ConvNetJS - Javascript library for training Deep Learning models (Neural Networks) 

      http://cs.stanford.edu/people/karpathy/convnetjs/

    2. RecurrentJS - Deep Recurrent Neural Networks and LSTMs in Javascript

      https://github.com/shiffman/recurrentjs

    3. WORD2VEC

      http://technobium.com/find-words-similarity-using-deeplearning4j-word2vec/


    TensorFlow


    1. Projector

      http://projector.tensorflow.org/

    2. Magenta

      https://github.com/tensorflow/magenta

    3. TensorFlow and Flask

      (https://blog.metaflow.fr/tensorflow-how-to-freeze-a-model-and-serve-it-with-a-python-api-d4f3596b3adc#.96tvigb98_)

      Thanks to @Hebali basic pipeline, minus TensorFlow plus a very basic placeholder function

      http://www.patrickhebron.com/learning-machines/week8.html

    4. Awesome Tensorflow - curated list of TensorFlow tutorials

      https://github.com/jtoy/awesome-tensorflow


    Tensorflow posts


    1. Big deep learning news: Google Tensorflow chooses Keras

      http://www.fast.ai/2017/01/03/keras/

    2. Simple end-to-end TensorFlow examples

      http://bcomposes.com/2015/11/26/simple-end-to-end-tensorflow-examples/


    t-SNE


    1. t-SNE 😅

      https://lvdmaaten.github.io/tsne/

    2. t-SNE 😅

      https://scienceai.github.io/tsne-js/

    3. An illustrated introduction to the t-SNE algorithm

      https://www.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm

    4. Visualizing Data Using t-SNE 🌈

      https://www.youtube.com/watch?v=RJVL80Gg3lA&list=UUtXKDgv1AVoG88PLl8nGXmw



    AIjob社


    AIjob社:是《全球人工智能》推出的一项免费求职服务。目前与约100家ai企业合作提供近300个工作岗位。有实习,求职和跳槽意向的ai相关开发工程师可发送简历到邮箱:274724446@qq.com






    全球人工智能近期经典文章推荐


    解析|数据分析和精确运算让深度学习如何做到“思考”?

    《THE》重磅:从地平线报告看人工智能如何颠覆高等教育

    Google X实验室 透露机器学习“热气球网络计划”

    深度解析|XLA如何让TensorFlow的机器学习速度提升58倍?

    最新|UFC教授齐国君:详解WGAN和LS-GAN的本质和联系?

    重磅|Tesla CEO马斯克提出“改造人”计划 欲化解人工智能危机

    污点|大数据告诉你情人节大家都在“干”什么?

    应用|人工智能如何让一颗被冷冻了五年的头颅说话?

    分析|阿里工程师如何评价微软亚洲研究院提出的LightRNN?

    重磅|百度宣布PaddlePaddle和Kubernetes 兼容:开发者可便捷做大规模深度学习训练

    重磅|物理学家最新发现:神经网络效率 受限热力学第二定律



    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存