查看原文
其他

人教版七年级数学下全册教案(第5-10单元)文末查看下载

全册精讲+→ 班班通教学系统 2023-02-12

 扫码查看下载

全部资源



人教版七年级数学下册知识点精讲
七年级数学下册期末复习资料课件打包下载

第五章 相交线与平行线

5.1.1相交线

教学目标:

1.理解对顶角和邻补角的概念,能在图形中辨认.

2.掌握对顶角相等的性质和它的推证过程.

3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力.

重点:在较复杂的图形中准确辨认对顶角和邻补角.

难点:在较复杂的图形中准确辨认对顶角和邻补角.

教学过程

一、创设情境,引入课题

先请同学观察本章的章前图,然后引导学生观察,并回答问题.

学生活动:口答哪些道路是交错的,哪些道路是平行的.

教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.

1.对顶角和邻补角的概念

学生活动:观察上图,同桌讨论,教师统一学生观点并板书.

【板书】∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?

学生口答:∠2和∠4再也是对顶角.

紧扣对顶角定义强调以下两点:

(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.

2.对顶角的性质

提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?

学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.

【板书】∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

∴∠l=∠3(同角的补角相等).

注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),

∴∠1=∠3(等量代换).

学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

解:∠3=∠1=40°(对顶角相等).

∠2=180°-40°=140°(邻补角定义).

∠4=∠2=140°(对顶角相等).

三、范例学习

学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.

变式1:把∠l=40°变为∠2-∠1=40°

变式2:把∠1=40°变为∠2是∠l的3倍

变式3:把∠1=40°变为∠1:∠2=2:9

四、课堂小结

学生活动:表格中的结论均由学生自己口答填出.

 

角的名称

特征

性质

相同点

不同点

对顶角

①两条直线相交面成的角

②有一个公共顶点

③没有公共边

对顶角

相等

都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。

对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个有的对顶角有一个,而一个角的邻补角有两个。

邻补角

①两条直线相交面成的角

②有一个公共顶点

③有一条公共边

邻补角

互补

 

5.1.2垂线(第一课时)

 教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力.

2.了解垂直概念,能说出垂线的性质“经过一点,能画出已知直线的一条垂线,并且只能画出一条垂线”,会用三角尺或量角器过一点画一条直线的垂线.

重点两条直线互相垂直的概念、性质和画法.

教学过程

一、创设问题情境

1.学生观察教室里的课桌面、黑板面相邻的两条边,方格纸的横线和竖线……,思考这些给大家什么印象?

在学生回答之后,教师指出:“垂直”两个字对大家并不陌生,但是垂直的意义,垂线有什么性质,我们不一定都了解,这可是我们要学习的内容.

2.学生观察课本P3图5.1-4思考:固定木条a,转动木条,当b的位置变化时,a、b所成的角a是如何变化的?其中会有特殊情况出现吗?当这种情况出现时,a、b所成的四个角有什么特殊关系?

教师在组织学生交流中,应学生明白:当b的位置变化时,角a从锐角变为钝角,其中∠a是直角是特殊情况.其特殊之处还在于:当∠a是直角时,它的邻补角,对顶角都是直角,即a、b所成的四个角都是直角,都相等.

3.师生共同给出垂直定义.

师生分清“互相垂直”与“垂线”的区别与联系:“互相垂直”指两条直线的位置关系;“垂线”是指其中一条直线对另一条直线的命名。如果说两条直线“互相垂直”时,其中一条必定是另一条的“垂线”,如果一条直线是另一条直线的“垂线”,则它们必定“互相垂直”。

4.垂直的表示法.

垂直用符号“⊥”来表示,结合课本图5.1-5说明“直线AB垂直于直线CD,垂足为O”,则记为AB⊥CD,垂足为O,并在图中任意一个角处作上直角记号,如图.

5.简单应用

(1)学生观察课本P6图5.1-6中的一些互相垂直的线条,并再举出生活中其他实例.

(2)判断以下两条直线是否垂直:

①两条直线相交所成的四个角中有一个是直角;

②两条直线相交所成的四个角相等;

③两条直线相交,有一组邻补角相等;

④两条直线相交,对顶角互补.

二、画图实践,探究垂线的性质

1.学生用三角尺或量角器画已知直线L的垂线.

(1)已知直线L(教师在黑板上画一条直线L),画出直线L的垂线.待学生上黑板画出L的垂线后,教师追问学生:还能画出L的垂线吗?能画几条?通过师生交流,使学生明确直线L的垂线有无数多条,即存在,但有不确定性.教师再问:怎样才能确定直线L的垂线位置?在学生道出:在直线L上取一点A,过点A画L的垂线,并且动手画出图形.

教师板书学生的结论:经过直线上一点有且只有一条直线与已知直线垂直.

(2)经过直线L外一点B画直线L的垂线,这样的垂线能画出几条?从中你又得出什么结论?

教师板书学生的结论:经过直线外一点有且只有一条直线与已知直线垂直.

教师让学生通过画图操作所得两条结论合并成一条,并板书:

垂线性质1:过一点有且只有一条直线与已知直线垂直.

2.变式训练,巩固垂线的概念和画法,如图根据下列语句画图:

(1)过点P画射线MN的垂线,Q为垂足;

(2)过点P画射线BN的垂线,交射线BN反向延长线于Q点;

(3)过点P画线段AB的垂线,交线AB延长线于Q点.

学生画完图后,教师归结:画一条射线或线段的垂线,就是画它们所在直线的垂线.

三、课堂小结

本节学习了互相垂直、垂线等概念,还学习了过一点画已知直线的垂线的画法,并得出垂线一条性质,你能说出相关的内容吗?

四、布置作业:

5.1.2垂线(第二课时)

 

教学目标:1.经历观察、操作、想像、归纳概括、交流等活动,进一步发展空间观念,用几何语言准确表达能力。毛2.了解垂线段的概念,了解垂线段最短的性质,体会点到直线的距离的意义,并会度量点到直线的距离.

教学重点:“垂线段最短”的性质,点到直线的距离的概念及其简单应用.

教学难点:对点到直线的距离的概念的理解.

教学过程

一、创设问题情境

1.教师展示课本图5.1-8,提出问题:要把河中的水引到农田P处,如何挖渠能使渠道最短?

学生看图、思考.

2.教师以问题串形式,启发学生思考.

(1)问题1,上学期我们曾经学过什么最短的知识,还记得吗?

学生说出:两点间线段最短.

(2)问题2,如果把渠道看成是线段,它的一个端点自然是P,那么另一个端点的位置呢?把江河看成直线L,那么原问题就是怎么的数学问题.

问题2使学生能用数学眼光思考:在连接直线L外一点P与直线L上各点的线段中,哪一条最短?

3.教师演示教具,给学生直观的感受.

教具如图:在硬纸板上固定木条L,L外一点P,转动的木条a一端固定在点P.

使木条L与a相交,左右摆动木条a,L与a的交点A随之变化,线段PA长度也随之变化.PA最短时,a与L的位置关系如何?用三角尺检验.

4.学生画图操作,得出结论.

(1)画出直线L,L外一点P;

(2)过P点出PO⊥L,垂足为O;

(3)点A1,A2,A3……在L上,连接PA、PA2、PA3……;

(4)用叠合法或度量法比较PO、PA1、PA2、PA3……长短.

5.师生交流,得出垂线的另一条性质.

教师板书:连接直线外一点与直线上各点的所有线段中,垂线段最短.

简单说成:垂线段最短.

关于垂线段教师可让学生思考:

(1)垂线段与垂线的区别联系.

(2)垂线段与线段的区别与联系.

二、点到直线的距离

1.师生根据两点间的距离的意义给出点到直线的距离命名.

结合课本图形(图5.1-9),深入认识垂线段PO:PO⊥L,∠POA=90°,O为垂足,垂线段PO的长度比其他线段PA1、PA2……中是最短的.

按照两点间的距离给点到直线的距离命名,教师板书:

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.

在图5.1-9中,PO的长度是点P到直线L的距离,其余结论PA、PA2……长度都不是点P到L的距离.

2、练习课本P6练习

 

三、课堂小结:通过这节课,我们主要学习了什么呢?

四、布置作业:

 

5.1.3同位角、内错角、同旁内角

 

教学目标:1、理解同位角、内错角、同旁内角的概念;2、会识别同位角、内错角、同旁内角.

重点:同位角、内错角、同旁内角的概念与识别;

难点:识别同位角、内错角、同旁内角。

教学过程

一、导入新课

前面我们研究了一条直线与另一条直线相交的情形,接下来,我们进一步研究一条直线分别与两条直线相交的情形。

二、同位角、内错角、同旁内角

如图,直线a、b与直线c相交,或者说,两条直线a、b被第三条直线c所截,得到八个角。

我们来研究那些没有公共顶点的两个角的关系。

∠1与∠2、∠4与∠8、∠5与∠6、∠3与∠7有什么位置关系?

在截线的同旁,被截直线的同方向(同上或同下).

具有这种位置关系的两个角叫做同位角。

同位角形如字母“F”。

∠3与∠2、∠4与∠6的位置有什么共同的特点?

在截线的两旁,被截直线之间。

具有这种位置关系的两个角叫做内错角.

内错角形如字母“Z”。

∠3与∠6、∠4与∠2的位置有什么共同的特点?

在截线的同旁,被截直线之间。

具有这种位置关系的两个角叫做同旁内角.

同旁内角形如字母“U”。

思考:这三类角有什么相同的地方?

(1)都不相邻即不存在共公顶点;(2)有一边在同一条直线(截线)上。

三、例题

例如图,直线DE,BC被直线AB所截,(1)∠1与∠2、∠1与∠3、∠1与∠4各是什么角?为什么?(2)如果∠1=∠4,那么∠1与∠2相等吗?∠1与∠3互补吗?为什么?

解:(1)∠1与∠2是内错角,因为∠1与∠2在直线DE,BC之间,在截线AB的两旁;∠1与∠3是同旁内角,因为∠1与∠3在直线DE,BC之间,在截线AB的同旁;∠1与∠4是同位角,因为∠1与∠4在直线DE,BC的同方向,在截线AB的同方向。(2)如果∠1=∠4,又因为∠2=∠4,所以∠1=∠2;因为∠3+∠4=1800,又∠1=∠4,所以∠1+∠3=1800,即∠1与∠3互补。

四、课堂小结:通过这节课,我们主要学习了什么呢?

五、布置作业:

 

5.2.1平行线

 

教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.毛

2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.

3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.

重点:探索和掌握平行公理及其推论.

难点:对平行线本质属性的理解,用几何语言描述图形的性质.

教学过程

一、创设问题情境

1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?

学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?

2.教师演示教具.

顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?在这个过程中,有没有直线b与c木相交的位置?

3.教师组织学生交流并形成共识.

二、平行线定义表示法

1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a与直线b不相交的位置,这时直线a与b互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.

直线a与b是平行线,记作“∥”,这里“∥”是平行符号.

教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.

2.同一平面内,两条直线的位置关系

教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.

在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.

三、画图、观察、归纳概括平行公理及平行公理推论

1.在转动教具木条b的过程中,有几个位置能使b与a平行?

本问题是学生直觉直线b绕直线a外一点B转动时,有并且只有一个位置使a与b平行.

2.用直线和三角尺画平行线.

本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.

四、作业:

 

5.2.2平行线的判定(一)

 

教学目标:经历探索两直线平行条件的过程,理解两直线平行的条件.

重点:探索两直线平行的条件

难点:理解“同位角相等,两条直线平行”

教学过程

一、情景导入.

装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹角为多少度时,才能使木条a与木条b平行?

要解决这个问题,就要弄清楚平行的判定。

二、直线平行的条件

以前我们学过用直尺和三角尺画平行线,如图(课本P13图5.2-5)在三角板移动的过程中,什么没有变?

三角板经过点P的边与靠在直尺上的边所成的角没有变。

简化图5.2-5,得图3.

图3

∠1与∠2是三角板经过点P的边与靠在直尺上的边所成的角移动前后的位置,显然∠1与∠2是同位角并且它们相等,由此我们可以知道什么?

两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

简单地说:同位角相等,两条直线平行.

符号语言:∵∠1=∠2∴AB∥CD.

如图(课本P145.2-7),你能说出木工用图中这种叫做角尺的工具画平行线的道理吗?

用角尺画平行线,实际上是画出了两个直角,根据“同位角相等,两条直线平行.”,可知这样画出的就是平行线。

如图,(1)如果∠2=∠3,能得出a∥b吗?(2)如果∠2+∠4=1800,能得出a∥b吗?

你能用文字语言概括上面的结论吗?

两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

简单地说:内错角相等,两直线平行.

符号语言:∵∠2=∠3∴a∥b.

(2)∵∠4+∠2=180°,∠4+∠1=180°(已知)

∴∠2=∠1(同角的补角相等)

∴a∥b.(同位角相等,两条直线平行)

你能用文字语言概括上面的结论吗?

两条直线被第三条直线所截,如果同旁内角互补,那么两条直线平行.

简单地说:同旁内角互补,两直线平行.

符号语言:∵∠4+∠2=180°∴a∥b.

四、课堂练习

1、课本P15练习1,补充(3)由∠A+∠ABC=1800可以判断哪两条直线平行?依据是什么?

2、课本P162题。

五、课堂小结:怎样判断两条直线平行?

六、布置作业:


5.2.2平行线的判定(二)

教学目标1、掌握直线平行的条件,并能解决一些简单的问题;

2、初步了解推理论证的方法,会正确的书写简单的推理过程。

重点:直线平行的条件及运用

难点:会正确的书写简单的推理过程是

教学过程

一、复习导入

我们学习过哪些判断两直线平行的方法?

(1)平行线的定义:在同一平面内不相交的两条直线平行。

(2)平行公理的推论:如果两条直线都平行于第三条直线,那么这两条直线也互相平行。

(3)两直线平行的条件:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.

两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.

两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.

二、例题

例在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?

分析:由BE平分∠ABD我们可以知道什么?联系∠DBE=∠A,我们又可以知道什么?由此能得出BE∥AC吗?为什么?

解:∵BE平分∠ABD

∴∠ABE=∠DBE(角平分线的定义)

又∠DBE=∠A

∴∠ABE=∠A(等量代换)

∴BE∥AC(内错角相等,两直线平行)

注意:用符号语言书写证明过程时,要步步有据。

四、课堂练习

1、如图,∠1=∠2=55°,试说明直线AB,CD平行?.

2、如图所示,已知直线a,b,c,d,e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为­什么?

五、布置作业::


5.3.1平行线的性质

教学目标:1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。毛

2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.

重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.

难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用.

教学过程

一、引导学生逆向思维

现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?

二、实践探究

1.学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3-1).

2.学生测量这些角的度数,把结果填入表内.

∠1

∠2

∠3

∠4

∠5

∠6

∠7

∠8

度数









3.学生根据测量所得数据作出猜想.

(1)图中哪些角是同位角?它们具有怎样的数量关系?(2)图中哪些角是内错角?它们具有怎样的数量关系?

(3)图中哪些角是同旁内角?它们具有怎样的数量关系?

4.学生验证猜测.

学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?

5.师生归纳平行线的性质,教师板书.

平行线具有性质:

性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等.

性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等.

性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补.

教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定.

6.教师引导学生理清平行线的性质与平行线判定的区别.

学生交流后,师生归纳:两者的条件和结论正好相反:

由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论.

由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的性质,这里两直线平行是条件,角的关系是结论.

7.进一步研究平行线三条性质之间的关系.

教师:大家能根据性质1,推出性质2成立的道理吗?

结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化?学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程.

因为a∥b,所以∠1=∠2(两直线平行,同位角相等);

又∠3=∠1(对顶角相等),所以∠2=∠3.

教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1.∠2=∠3是根据等式性质.根据等式性质得到的结论可以不写理由.

学生仿照以下说理,说出如何根据性质1得到性质3的道理.

8.平行线性质应用.

讲解课本P23例题

三、巩固练习:课本练习(P22).

四、作业:


5.3.2命题、定理 

教学目的:1、知识与技能:了解命题的概念,并能区分命题的题设和结论.

2、经历判断命题真假的过程,对命题的真假有一个初步的了解.

3、初步培养学生不同几何语言相互转化的能力.

重点:命题的概念和区分命题的题设与结论.

难点:区分命题的题设和结论.

教学过程

一、创设情境复习导入

教师出示下列问题:

1.平行线的判定方法有哪些?

2.平行线的性质有哪些.

学生能积极的思考教师所出示的各个问题复习巩固有关的知识点为本节课的学习打下良好的基础.(注意:平行线的判定方法三种,另外还有平行公理的推论)

二、尝试活动探索新知

教师给出下列语句,

①如果两条直线都与第三条直线平行,那么这条直线也互相平行;

②等式两边都加同一个数,结果仍是等式;

③对顶角相等;

④如果两条直线不平行,那么同位角不相等.

学生学生能由教师的引导分析每个语句的特点.思考:你能说一说这4个语句有什么共同点吗?并能耐总结出这些语句都是对某一件事情作出“是”或“不是”的判断.初步感受到有些数学语言是对某件事作出判断的.

教师给出命题的定义.

判断一件事情的语句,叫做命题.

(3)命题的组成.

①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项.

②命题的形成,可以写成“如果……,那么……”的形式。

真命题与假命题:

教师出示问题:

如果两个角相等,那么它们是对顶角.

如果a>b.b>c那么a=b

如果两个角互补,那么它们是邻补角.

三、尝试反馈理解新知

明确命题有正确与错误之分:

命题的正确性是我们经过推理证实的,这样得到的真命题叫做定理,作为真命题,定理也可以作为继续推理的依据.

1.“等式两边乘同一个数,结果仍是等式”是命题吗?它们题设和结论分别是什么?

2.命题“两条平行线被第三第直线所截,内错角相等”是正确的?命题“如果两个角互补,那么它们是邻补角”是正确吗?再举出一些命题的例子,判断它们是否正确.

 

四、总结拓展:教师引导学生完成本节课的小结,强调重要的知识点.

五、布置作业:

 

5.4平移 

教学目标:

1、了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题

2、培养学生的空间观念,学会用运动的观点分析问题.

重点:平移的概念和作图方法.

难点:平移的作图.

教学过程

一.观察图形形成印象

生活中有许多美丽的图案,他们都有着共同的特点,请同学们欣赏下面图案.

观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明.

二.提出新知实践探索

平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点.(3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移

探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案

四、巩固练习课本33页:1,2,4,5,6,7

五、小结:在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上。2利用平移的特征,作平行线,构造等量关系是接7题常用的方法.

六、作业

第五章小结

 教学目标:1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化,梳理本章的知识结构.

2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.

3.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案.

重点:复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.

难点:垂直、平行的性质和判定的综合应用.

教学过程

一、复习提问

本章相交线、平行线中学习了哪些主要问题?教师根据学生的回答,逐步形成本章的知识结构图,使所学知识系统化.

二、回顾与思考 

1.对顶角、邻补角。

(1)教师提出问题①两条直线相交、构成哪两种特殊位置关系的角?指出图(1)中具有这两种位置的角.

(1)                        (2)                               (3)

②如图(2)中,若∠AOD=90°,那么直线AB,CD的位置关系如何?

③如图(3)中,∠1与∠2,∠2与∠3,∠3与∠4是怎么位置关系的角?

2.垂线及其性质.(1)复习时教师应强调垂线的定义即可以作垂线的制定方法用,也可以作垂线性质用.

作判定用时写成:如图(2),因为∠AOD=90°,所以AB⊥CD,这是一个角的“数”到两直线垂直的“形”的判断。

作为性质用时写成:如图(2),因为AB⊥CD,所以∠AOD=90°。这是由“形”到“数”的说理。

(2)如图(4),直线AB、CD、EF相交于点O,CD⊥EF,∠1=35°,求∠2的度数.

鼓励学生用不同方法求解.

(3)垂线性质1和性质2.

让学生叙述垂线的性质,懂得分清这两个命题的题设和结论,垂线性质一说得过一点已知直线的垂线存在并且唯一的.

学生思考:①请回忆一下后体育课测跳远成绩时,教师是怎样测量的?

如图(5),AB⊥L,BC⊥L,B为重足,那么A、B、C三点在同一条直线上吗? ②为什么?

③点到直线的距离、两条平行线的距离.

初中阶级学习了三种距离,即是距离,就要懂得的共同点:距离都是线段的长度,又要懂得区别:两点间的距离是连接这两点的线段的长度,点到直线距离是直线外一点引已知直线的垂线段的长度,平行线间的距离是某条直线上的一点到另一点平行线的距离.

学生练习:①如图(6),四边形ABCD,AD∥BC,AB∥CD,过A作AE⊥BC,过A作AF⊥CD,垂足分别是E、F,量出点A到BC的距离和AB、CD平行线间的距离.

②请归纳一下与垂直有关的知识中,有哪些重要结论?

(3)对比平行线的性质和直线平行的条件,它们有什么异同?

(4)为什么研究平面内两直线的位置关系总是与角联系起来?围绕这些问题展开讨论,交流.

教师使学生进一步明确:平行线的判定也是由“数”即角与角的关系到“形”的判断,而性质则是“形”到“数”的说理,在研究两条直线的垂直或平行时共同点是把研究它们的位置关系转化为研究角或角之间的关系。

学生练习:①填空:如图(8),当_______时,a∥c,理由是________;当______时,b∥c,理由是_________;当a∥b,b∥c时,______∥______,理由是_________.

②如图(9),AB∥CD,∠A=∠C,试判断AD与BC的位置关系?为什么?

教师根据学生情况酌情给予引导.

5.关于平移,让学生思考:

(1)图形平移时,连接对应点有什么关系?(2)如何确定图形平移的方向和平移的距离?

(3)你能用平移设计一些图案吗?

练习:如图(10),平移四边形ABCD,使点B移动到点B′,画出平移后的四边形A′B′C′D′.

三、作业

第六章  实数

 

6.1平方根(1)

 

教学目的

1.了解平方根的概念,会用根号表示数的平方根。

2.了解开方与乘方互为逆运算,会用平方根求某些非负数的平方根。

重点、难点

重点:了解开方与乘方互为逆运算。

难点:熟练地用平方根求某些非负数的平方根。

教学过程

(一) 创设情景,感悟新知

情景一:设图中的小方格的边长为1,你能分别说出图中2个长方形的对角线AB,A’B’的长吗?

情景二:在等式x2=a中,已知,你能求a吗?已知,你能求吗?(设计说明:由学生熟悉的知识提出问题,也是一种不错的情景,我们在考虑设计情景不要只认为和生活实际联系起来才是好情景其实不然。)

(二) 探索规律,揭示新知

问题一:认真观察下面的式子,积极思考,互相讨论:

22=4,       (﹣2) 2=4,        (1/3) 2=1/9,

(﹣1/3) 2=1/9,       0.52=0.25,       (﹣0.5) 2=0.25

(1)请你举例与上面的式子类同的式子;       

(2)你得到什么结论?

(分小组讨论,老师适当参与给予帮助。)

如果一个数的平方等于a,那么这个数叫做的a平方根,也称为二次方根。即  如果x2=a,那么就叫做的平方根。(设计说明:所选的题目都具有代表性,学生通过做题后思考讨论交流,能够较好接受平方根的概念)

问题二:在下列各括号中能填写适当的数使等式成立吗?如果能够,请填写;如果不能,请说明理由,并与同学交流。

(  )2=9   (  )2=25  (  )2=1/4 (  )2=1/2  (  )2=5   (  )2=10   (  )2=0  (  )2=﹣4

一个正数的平方根有2个,它们互为相反数。一个正数的正的平方根,记作“”,正数的负的平方根记作“”。这两个平方根合起来记作“”,读作“正,负根号a”.(设计说明:通过对具体的数的平方根的讨论交流,使学生自己总结出正数、0、负数的平方根的情况,让学生经历探索规律的过程,加深对规律的理解)

问题三:从问题二中,你得到了什么结论?

一个正数的平方根有2个,它们互为相反数;0只有1个平方根,它是0本身;负数没有平方根。(设计说明:在讨论的过程中,不同层次的学生可能会遇到不同的困难,我们教师要给与适当的帮助,要给与鼓励)  

 (三) 尝试反馈,领悟新知

例1 求下列各数的平方根:

(1)25;2)16/81  (3)15; (4)(﹣2)2。

分析:1、判断这些数是否都有平方根;

2、根据规律各个数的平方根有几个?(设计说明:在处理例题时要让学生充分参与分析,在运算时特别要注意一个正数的平方根有两个,对解题方式有提醒按要求)

练习一:完成书本41页练习。

练习二:1、平方得81的数是      ,因此81的平方根是    。

2、平方根是它本身的数是       。

3、如果-b是a的平方根,那么(     )

A、b=a2;        B、a=b2;       C、b=﹣a2;       D、a=﹣b2。

(设计说明:在练习的过程中,无论哪个层次的学生其回答只得法,我们教师要给与鼓励和肯定)

(四) 布置作业,巩固新知

可选用:下列各数有平方根吗?如果有,写出它的平方根;如果没有,请说明理由。

(1)1/4;      (2) (﹣4.3)2;       (3)∣﹣9∣      (4)﹣52。

 

6.1平方根(2)

教学目的

1.了解算术平方根的概念,会用根号表示数的算术平方根。

2.了解开方与乘方互为逆运算,会用平方根运算求某些非负数的算术平方根。

3.能运用算术平方根解决一些简单的实际问题。

重点、难点

重点:理解算术平方根的意义

难点:能运用算术平方根解决一些简单的实际问题。

教学过程

(一) 创设情景,感悟新知

情景一:小明家装修新居,计划用100块地板砖来铺设面积为25平方米的客厅地面,请帮他计算:每块正方形地板砖的边长为多少时,才正好合适(不浪费)?

情景二:求4个直角边长为10厘米的等腰直角三角形纸片拼合成的正方形的边长?(设计说明:将生活实际与数学联系起来,更能激发学生的兴趣,便于学生主动发现一个数的算术平方根——正的平方根,为解决问题提供方便)

教师讲解:正数有个平方根,其中正数的正的平方根,叫的算术平方根.

例如,4的平方根是,2叫做4的算术平方根,记作=;

2的平方根是,叫做2的算术平方根,记作。

(二) 探索规律,揭示新知

例1  求下列各数的算术平方根:

(1)625;       (2)0.0081;      (3)6;        (4)0。

(设计说明:在书写时仍采用结合文字语言叙述是写法,以利于学生加深对开平方与平方互为逆运算关系的理解。此题虽然比较简单但也考查了学生对算术平方根的理解情况,我们从学生的角度尤其学习有困难的学生来思考的话也许讲解起来学生更容易理解了)

 (三)尝试反馈,领悟新知

完成下列习题,做题后思考讨论交流。

6.2立方根

教学目的

1.在一定的情境只,理解立方根的概念,使学生不断获得解决问题的经验,提高思维水平,学习中在一定的情境只,理解立方根的概念,使学生不断获得解决问题的经验,提高思维水平,学习中。

2.了解立方根的概念,会用根号表示一个数的立方根,了解开立方与立方互为逆运算,能用立方运算求一些数的立方根。

3.能用立方根解决一些简单的实际问题。

重点、难点   

重点:正确地理解立方根的概念及符号表示并能熟练应用。

难点:正确地理解立方根的概念及符号表示并能熟练应用。

教学过程

(一) 创设情境,感悟新知

情境一:体积为1的正方体,棱长为多少?体积增加1,棱长为多少?

情境二:做一个正方体纸盒,使它的容积为64cm,正方体纸盒的棱长是多少?如果要使正方体纸盒容积为25cm,它的棱长是多少?

引入课题————立方根

从实际问题的计算,感受学习立方根的必要性,教学中引导学生借助平方根的定义,平方根的符号表示,开平方运算,自己给立方根下定义,给出立方根的符号表示和什么叫开立方运算。(设计说明:由学生熟知的实例提出问题,激发学生的学习兴趣,让学生在解决问题中遇到困难,激发他的求知欲,这样就为发现新知创造了一个最佳的心理认知环境,通过类比可以激发学生认知结构中的相关知识,为探求新知作好准备,更加积极主动的掌握新知。)

(二) 探索活动

问题一  根据立方根的定义,你能举出某个数的立方根吗?你能用符号表示吗?(设计说明:学生在大量举例中,弄清立方根的概念,提高有条理的表达能力,

3.求下列各式中的X

x 3+729=0  (x-3) 3=64

(设计说明:通过第1、2题的观察、比较、判断,进一步澄清平方根、立方根概念,提高学生辨别是非的能力;第3题是开立方的简单应用,体现立方根的概念在解方程中的应用,显示方程形式的丰富多彩及解题思路的广泛性。)

(三) 思维拓展,运用新知




分析:要正确地将以上各数分类,就必须对各类书的概念十分清晰,用概念来判定。

(四) 课堂小结

⒈怎样的数是无理数?请举例说明;⒉说说你对数的认识。(可以小论文的形式出现)

(五)布置作业

 

6.3 实数(2)

 

教学目的

1.解有理数的运算在实数范围内仍然适用。

2.能用有理数估计一个无理数的大致范围。

3.能利用计算器比较实数的大小,进行实数的四则运算。

4.通过用不同的方法比较两个无理数的大小,理解估算的意义、发展数感和估算能力,在运用实数运算解决实际问题的过程中,增强应用意识,提高解决问题的能力,体会数学的应用价值。

重点、难点

重点:在实数范围内会运用有理数运算。

难点:用有理数估算一个无理数的大致范围。

教学过程:

(一) 回顾旧知

1.在有理数范围内绝对值、相反数、倒数的意义是什么?

2.比较两个有理数的大小有哪些方法?

3.你能借用有理数范围内的规定举例说明无理数的绝对值、无理数的倒数、两个无理数互为相反数吗?

(设计说明:回顾(2)后,教师应指出实数的绝对值、相反数、倒数与有理数范围内的意义完全相同,并且有理数大小比较的方法、运算性质及运算律在实数范围内仍然适用,通过回顾旧知,在此基础上学生更易接受新知,把握新知和运用新知。)

(二) 探求新知

计说明:有些简单的无理数,可通过估算直接比较大小,而有些无理数需借助高科产品,如计算器或计算机来完成,此题就属于后者,没有便用计算器的地区,可以考虑为学生提供常用数学表或提供相关数据。)

练习:课本练习第1题 

练习:课本练习第2题。(设计说明:让学生学会用各种方法比较两个数的大小,练习二主要是对知识的应用,同时对学生提出了更高的要求,会灵活运用各种方法比较两个数的大小,同根号的数可以将系数带进去后应比较根号里新数的大小,即互为相反数的两个数可以只估算其中一个数与1的大小关系,则另一个数与之相反,当然还可以借助其他工具——计算器或计算机或常用数学用表等。)

例2 计算

第七章 平面直角坐标系

7.1.1有序数对

教学目标:1、理解有序数对的应用意义,了解平面上确定点的常用方法

2、    培养学生用数学的意识,激发学生的学习兴趣.

重点:有序数对及平面内确定点的方法.

难点:利用有序数对表示平面内的点.

教学过程

一.问题探知

1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯同学们欣赏下面图案.

2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°东经125.7°”。

3.某人买了一张8排6号的电影票,很快找到了自己的座位。

分析以上情景,他们分别利用那些数据找到位置的。

你能举出生活中利用数据表示位置的例子吗?

二.概念确定

有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(orderedpair),记作(a,b)。利用有序数对,可以很准确地表示出一个位置。

与3大道例1如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?

6大道







5大道



A




4大道







3大道





B


2大道







1大道

1街

2街

3街

4街

5街

6街

分析:图中确定点用前一个数表示大街,后一个数表示大道。

解:其他的路径可以是:

(3,5)→(4,5)→(4,4)→(5,4)→(5,3);

(3,5)→(4,5)→(4,4)→(4,3)→(5,3);

(3,5)→(3,4)→(4,4)→(5,4)→(5,3);

(3,5)→(3,4)→(4,4)→(4,3)→(5,3);

(3,5)→(3,4)→(3,3)→(4,3)→(5,3);

1.在教室里,根据座位图,确定数学课代表的位置

2.教材65页练习

三.方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。

(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。

7.1.2平面直角坐标系

 

教学目标:

1、认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位

2、  渗透对应关系,提高学生的数感.

重点:平面直角坐标系和点的坐标.

二.明确概念

平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,正方向;两个坐标轴的交点为平面直角坐标系的原点。

点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。

例1写出图中A、B、C、D点的坐标。

建立平面直角坐标系后,平面被坐标轴分成四部分,

分别叫第一象限,第二象限,第三象限和第四象限。

你能说出例1中各点在第几象限吗?

例2在平面直角坐标系中描出下列各点。

A(3,4);B(-1,2);C(-3,-2);D(2,-2)

问题1:各象限点的坐标有什么特征?练习:教材43页:练习1,2。

三.深入探索

识别坐标和点的位置关系,以及由坐标判断两点的关系以及两点所确定的直线的位置关系。

四、巩固练习:教材68页

五、课堂小结

1.平面直角坐标系;

2.点的坐标及其表示;

3.各象限内点的坐标的特征;

4.坐标的简单应用

六、作业

7.2.1用坐标表示地理位置

 

教学目标:1了解用平面直角坐标系来表示地理位置的意义及主要过程;培养学生解决实际

问题的能力.

2通过学习如何用坐标表示地理位置,发展学生的空间观念.

3通过学习,学生能够用坐标系来描述地理位置.

4通过用坐标系表示实际生活中的一些地理位置,培养学生的认真、严谨的做事态度.

重点:利用坐标表示地理位置.

难点:建立适当的直角坐标系,利用平面直角坐标系解决实际问题.

教学过程

一、创设问题情境

观察:教材第73页图

今天我们学习如何用坐标系表示地理位置,首先我们来探究以下问题.

二、师生互动,探究用坐标表示地理位置的方法

活动1

根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.

小刚家:出校门向东走150米,再向北走200米.

小强家:出校门向西走200米,再向北走350米,最后再向东走50米.

小敏家:出校门向南走100米,再向东走300米,最后向南走75米.

问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?

小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为x轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:10000(即图中1cm相当于实际中10000cm,即100米).

由学生画出平面直角坐标系,标出学校的位置,即(0,0).

引导学生一同完成示意图.

问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?

可以很容易地写出三位同学家的位置.

活动2归纳利用平面直角绘制区域内一些地点分布情况平面图的过程.

经过学生讨论、交流,教师适当引导后得出结论:

1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;

2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;

3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.

应注意的问题:

用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.

有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.

活动3进一步理解如何用坐标表示地理位置.

7.2.2用坐标表示平移

 

教学目标:

1掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.

2发展学生的形象思维能力,和数形结合的意识.

3用坐标表示平移体现了平面直角坐标系在数学中的应用.

4.培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化

重点:掌握坐标变化与图形平移的关系.

难点:利用坐标变化与图形平移的关系解决实际问题.

教学过程

一、引言

上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.

二、新课

展示问题:如图.

(1)如图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?

(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?

(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?

规律:在平面直角坐标系中,将点(xy)向右(或左)平移a个单位长度,可以得到对应点(x+ay)(或(,));将点(xy)向上(或下)平移b个单位长度,可以得到对应点(xy+b)(或(,)).

教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.

如图(1),三角形ABC三个顶点坐标分别是A(4,3),B(3,1),C(1,2).

(1)将三角形ABC三个顶点的横坐标后减去6,纵坐标不变,分别得到点A1、B1、C1,依次连接A1、B1、C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置上有什么关系?

(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2、B2、C2,依次连接A2、B2、C2各点,所得三角形A2B2C2与三角形ABC的大小、形状和位置上有什么关系?

引导学生动手操作,按要求画出图形后,解答此例题.

解:如图(2),所得三角形A1B1C1与三角形ABC的大小、形状完全相同,三角形A1B1C1可以看作将三角形ABC向左平移6个单位长度得到.类似地,三角形A2B2C2与三角形ABC的大小、形状完全相同,它可以看作将三角形ABC向下平移5个单位长度得到.

三、归纳:

第七章平面直角坐标系复习

教学目标:

1.进一步认识平面直角坐标系,了解点与坐标的对应关系;在给定的直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标.

2、能建立适当的平面直角坐标系描述物体的位置,进一步体会平面直角坐标系在解决问题中的作用.

3、在同一平面直角坐标系中,能用坐标表示平移变换.进一步让学生看到平面直角坐标系是数与形之间的桥梁,感受数学问题与几何问题的相互转化,发展学生的形象思维能力和数形结合意.

教学重点:全章知识的归纳整理及应用.

教学难点:所学知识的应用.

教学方法:设计典型例题,检测学生知识,科学地进行小结与归纳.

教学过程

 一、基础知识

1.有序数对:有序数对是指______的两个数组成的数对,它的表示形式是(a,b).

注意:(1)a与b要用逗号分开,以示它们是两个独立有序的数,又要用括号“包装”起来,表示它们是一个整体;(2)若a≠b则(a,b)与(b,a)表示两个不同的有序数对;(3)在直角坐标系中,有序数对(a,b)表示点的坐标,a,b依次表示横坐标、纵坐标.

2.平面直角坐标系的意义:在平面内,两条具有公共原点、并且______的数轴所构成的图形叫做平面直角坐标系,其中水平的数轴叫做______或_______,向______方向为正方向,竖直的数轴叫做______或_______,向______方向为正方向,横轴与纵轴的交点叫做平面直角坐标系的______,平面直角坐标系的两条数轴把坐标平面分成四个象限,这两条数轴的正方向的所夹的象限叫做第______象限,其它三个象限按逆时针方向依次叫做第______、______、______象限,坐标轴不属于任何象限;

注意:(1)组成平面直角坐标系的四个要素:①在同一平面内;②两条数轴;③互相垂直;④有公共原点.(2)两个规定:①正方向的规定:横轴取向右为正方向,纵轴取向上为正方向;②两条数轴单位长度规定:一般情况下,横轴与纵轴单位长度相同,为了实际需要有时横轴与纵轴单位长度可以不同.

3.各象限内点的坐标符号特点:在平面直角坐标系中,第一象限的横坐标与纵坐标都是正数,简单记作(+,+),那么第二象限的坐标特征是______,第三象限是______,第四象限是______;

4.特殊点的坐标

(1)坐标轴上点的坐标特点: 横轴(x轴)上点的坐标特征是(x,0),即纵坐标都是0;纵轴(y轴)上的点的坐标特征是______,即______;

(2)平行于坐标轴直线上的点的坐标:平行于x轴的直线上的各点的________相同,_______不同;平行于y轴的直线上的各点的_________相同,__________不同.

(3)对称点的坐标:点p(a,b)关于x轴对称的点为_________,点p(a,b)关于y轴对称的点为__________.

5.点到两轴的距离的意义: 点p(x,y)到x轴的距离为_______,到y轴的距离为______.

6. 用坐标表示地理位置的一般过程:①选原点,②规定x,y轴的正方向,

③确定单位长度,④在坐标系中描点,并写出各点的坐标和各地点的名称。

7.点的坐标与图形平移的关系:一个图形在平面直角坐标系中进行平移,其坐标就要发生相应的变化, 可以简单地理解为: 左、右平移纵坐标不变,横坐标变,变化规律是左减右加,上下平移横坐标不变,纵坐标变,变化规律是上加下减。例如: 当p(x,y)向右平移a个单位长度,再向上平移b个单位长度后坐标为p′(x+a ,y+b).

二、基本应用(例题精讲)

例1 指出下列各点所在的象限或坐标轴:

A(-2,3),B(1,-2),C(-1,-2),D(3,2),E(-3,0),F(0,1).

例2 在平面直角坐标系中,到x轴的距离等于2,到y轴的距离等于3的点的坐标是________;

例3 平面直角坐标系中,△ABC各顶点的坐标是A(6,8),B(-2,0),C(-5,-3),△DEF各顶点的坐标是D(0,3),E(8,11),F(-3,0),请仔细观察这两个三角形各顶点的坐标关系,判断△DEF是不是由△ABC平移得到的?如果是,是怎么样平移的?如果不是,请说明为什么?

二、巩固训练,熟练技能:

(一)、选择题

1.下列各点中,在第一象限的点是( )

A.(2,3) B.(2,-1) C.(-2,6) D.(-1,-5)

2.若点p的坐标是(x,y),且xy>0,x+y<0,则点p在第()象限

A.一 B.二 C.三 D.四

3.点A(1,2)先向右平移2个单位,然后再向下平移1个单位得到对应点A’,则点A’的坐标是( )

A.(3.3) B.(-1.3) C.(-l,1) D.(3,1)

二、填空题

1.p(3,-4)到x轴的距离是 .到y轴的距离是 .

2.已知点p(a,-2)与点Q(-3,b)关于x轴对称,则a= ,b= .

3.将点A (2,0)绕原点O按顺时针方向旋转900到点B,则点B的坐标是 .

4.已知AB∥x轴,且AB=3,若点A的坐标是(-1,2),则B点的坐标是 .

三、解答题

1、如图5:三角形ABC三个顶点A、B、C的坐标分别为A (1,2)、B(4,3)、C(3,1).

3.注意的问题:借助图形理解题意,这样直观形象,便于解决问题

六、布置课后作业:

第八章 二元一次方程组

8.1二元一次方程组

 

教学目标:1.认识二元一次方程和二元一次方程组.

2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.

教学重点:理解二元一次方程组的解的意义.

教学难点:求二元一次方程的正整数解.

教学过程:

一、情境导入

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

思考:这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?

由问题知道,题中包含两个必须同时满足的条件:

胜的场数+负的场数=总场数,胜场积分+负场积分=总积分.

这两个条件可以用方程xy=22

      2xy=40      表示.

二、二元一次方程(组)

上面两个方程中,每个方程都含有两个未知数(xy),并且未知数的指数都是1,像这样的方程叫做二元一次方程.


 

8.2消元(第一课时)

 

教学目标:

1.会用代入法解二元一次方程组.

2.初步体会解二元一次方程组的基本思想――“消元”.

3.通过研究解决问题的方法,培养学生合作交流意识与探究精神.

重点:用代入消元法解二元一次方程组.

难点:探索如何用代入法将“二元”转化为“一元”的消元过程.

教学过程:

一、知识回顾

1、什么是二元一次方程及二元一次方程的解? 

2、什么是二元一次方程组及二元一次方程组的解?

二、提出问题,创设情境

篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?

在上述问题中,我们可以设出两个未知数,列出二元一次方程组.

这个问题能用一元一次方程解决吗?

三、讲授新课

1、那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?

2、提出问题:从上面的学习中体会到代入法的基本思路是什么?主要步骤有哪些呢?

归纳:基本思路:“消元”——把“二元”变为“一元”。

主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表现出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。这种解方程组的方法称为代入消元法,简称代入法

3、把下列方程写成用含x的式子表示y的形式:

(1)2xy=3

(2)3xy-1=0 

(3)5x-3y= x + y

(4)-4x+y = -2

4、例题分析:

二、新授

1、例题讲解:

例2 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5,某厂每天生产这种消毒液22.5t,这些消毒液应该分装大、小瓶两种产品各多少瓶?

分析

(1)分析题意

     提醒学生注意单位的统一:22.5t=22500000g

(2)找出问题中的等量关系

大瓶数:小瓶数=2:5

大瓶装消毒液+小瓶装消毒液=22500000

(3)设未知数,并列出方程组

8.2消元(第三课时)

 

教学目标:1.掌握用加减法解二元一次方程组.

2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.

教学重点:用加减法解二元一次方程组.

教学难点:用加减法解二元一次方程组

教学过程

一、创设情境,导入新课

甲、乙、丙三位同学是好朋友,平时互相帮助。甲借给乙10元钱,乙借给丙8元钱,丙又给甲12元钱,如果允许转帐,最后甲、乙、丙三同学最终谁欠谁的钱,欠多少?

二、师生互动,课堂探究

(一)提高问题,引发讨论

3.加减消元法的概念

从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加减,就可以消去一个未知数,得到一个一元一次方程。

两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

4.例题讲解

分析:本题不能直接运用加减法求解,要进行化简整理后再求解。

6.想一想

(1)加减消元法解二元一次方程组的基本思想是什么?

(2)用加减消元法解二元一次方程组的主要步骤有哪些?

师生共析:

(1)用加减消元法解二元一次方程组的基本思路仍然是“消元”.

(2)用加减法解二元一次方程组的一般步骤:

第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,可以直接把两个方程的两边相减,消去这个未知数.

第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.

第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,常数项在方程的右边的形式,再作如上加减消元的考虑.

(三)归纳总结,知识回顾

本节课,我们主要是学习了二元一次方程组的另一解法──加减法.通过把方程组中的两个方程进行相加或相减,消去一个未知数,化“二元”为“一元”.

作业:P9练习第1题

8.2消元(第四课时)

 

【学习目标】

(1)学会使用方程变形,再用加减消元法解二元一次方程组.

(2)解决问题的一个基本思想:化归,即将“未知”化为“已知”,将“复杂”转为“简单”。

【学习重、难点】

1、用加减消元法解系数绝对值不相等的二元一次方程组

2、使方程变形为较恰当的形式,然后加减消元

【自主学习】

一、回忆、复习


8.2消元(第五课时)

 

教学目标:1.进一步掌握用加减法解二元一次方程组

2.能够列方程组解决应用题

教学重点:找出问题中的等量关系,并用加减法正确求出方程组的解

教学难点:会用二元一次方程组解决实际问题

教学过程

 

一、创设情境,导入新课

七年级(3)班在上体育课时,进行投篮比赛,体育老师做好记录,并统计了在规定时间内投进n个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表).

进球数n

0

1

2

3

4

5

投进球的人数

1

2

7

2

同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗?

二、师生互动,课堂探究

(一)指出问题,引发讨论

你能不能用二元一次方程组,帮助体育委员把表格中的两个数字补上呢?

(经过学生思考、讨论、交流)

(二)导入知识,解释疑难

1.例题讲解(见P95)

分析:如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,那么2台大收割机和5台小收割机1小时收割小麦______公顷,3台大收割机和2台小收割机1小时收割小麦_______公顷.

解:设1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.根据两

3.练一练:P97练习第2、3题.

(三)归纳总结,知识回顾

这节课我们经历和体验了列方程组解决实际问题的过程,体会到方程组是刻画现实世界的有效模型,从而更进一步提高了我们应用数学的意识及解方程组的技能.

三、布置作业 P98  6、7、9题

8.3 实际问题与二元一次方程组(一)

【学习目标】

1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用

2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性

3体会列方程组比列一元一次方程容易

4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力

【学习重、难点】

1、能根据题意列二元一次方程组;根据题意找出等量关系;

2、正确发找出问题中的两个等量关系

【自主学习】

1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的(   )

2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:

(1)方程两边表示的是(    )量

(2)同类量的单位要(     )

(3)方程两边的数值要相符。

3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否(    ),更重要的是要检验所求得的结果是否(     )

4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有(  ),兔有(   )

新课探究

看一看

课本99页探究1

问题:

1 题中有哪些已知量?哪些未知量?

2 题中等量关系有哪些?

3如何解这个应用题?

本题的等量关系是(1)(      )

(2)(          )

解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg

    根据题意列方程,得

解这个方程组得

 

答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算(     )出入。(“有”或“没有”)

【合作探究】

1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?

【达标测评】

1、某工厂第一车间比第二车间人数的4/5少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的3/4,问这两车间原有多少人?

2、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?


8.3 实际问题与二元一次方程组(二)

【学习目标】

1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;

3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力

【学习重、难点】

1、能根据题意列二元一次方程组;根据题意找出等量关系;

2、正确发找出问题中的两个等量关系

【自主学习】

1.    甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为(      )元和(     )元。

2.    在一堆球中,篮球与排球之比为赞助单位又送来篮球队10个排球10个,这时篮球与排球的数量之比为27:40,则原有篮球(      )个,排球(      )个。3.    现在长为18米的钢材,要据成10段,每段长只能为1米或2米,则这个问题中的等量关系是(1)1米的段数+(      )=10   (2)1米的钢材总长+(     )=18

新课探究

(出示问题)据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1 :5,现要在一块长200 m,宽100 m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)?

(1)先确定有两种方法分割长方形;再分别求出两个小长方形的面积;最后计算分割线的位置.

(2)先求两个小长方形的面积比,再计算分割线的位置.

(3)设未知数,列方程组求解.

如图,一种种植方案为:甲、乙两种作物的种植区域分别为长方形AEFD和BCFE.设AE=xm,BE=ym,根据问题中涉及长度、产量的数量关系,列方程组得


8.3实际问题与二元一次方程组(三)

【学习目标】

1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;

2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组;

3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值.

【学习重、难点】

1、借助列表分问题中所蕴含的数量关系。

2、用列表的方式分析题目中的各个量的关系。

【自主学习】

1.某校办工厂现在年产值是非曲直5万元,如果每增加工厂100元投资一年可增加班费50元产值,设新增加的投资额为x万元,总产值为y万元,那么x,y所满足的方程为(         )

2.一旅游者从下午宴时步行到晚上7时,他先走平路,然后登山,到山顶后又沿原路下山回到出发点,已知他走平路时每小时走4km,爬山时每小时走3km,下坡时每小时走6km,问旅游者一共走了(     )km

3.A,B两地相距20千米,甲乙两人分别从A,B两地同时相向而行,两小时后在途中相遇,然后甲返回A地,乙仍继续前进,当甲回到A地时,乙离A地还有2千米,则甲乙的速度分别为()和()

新课探究

(出示例题)如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.公路运价为1. 5元(吨·千米),铁路运价为1.2元(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?

(图见教材107页,图8.3-2)

设问1.如何设未知数?

销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设()

设问2.如何确定题中数量关系?

列表分析


产品x吨

原料y吨

合计

公路运费(元)




铁路运费(元)




价值(元)




由上表可列方程组

 

解这个方程组,得

 

所以这批产品的销售款比原料费与运输的和多()元.

【合作探究】

(1)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两种货车的记录如下表所示.


甲种货车(辆)

乙种货车(辆)

总量(吨)

第1次

4

5

28.5

第2次

3

6

27

这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元? 

 

【达标测评】

1.某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7.5%,问现在学校中男、女生各是多少? 

 

2.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?




第八章 小结与复习

教学目标

    1.使学生对方程组以及方程组的解有进一步的理解,能灵活运用代人法和加减法解二元一次方程组,会解简单的三元一次方程组,并能熟练地列出一次方程组解简单的应用题。使学生进一步了解把“二元”转化为“一元’’的消元思想,从而进一步理解把“未知”转化为“已知”,把“复杂”转化为“简单”的思想方法。

    2.列方程组解实际问题,提高分析问题、解决问题的能力。

    重点、难点

    1.重点:解二元一次方程组以及列方程组解应用题。

    2.难点;找出等量关系列出二元一次方程组.

教学过程

一、复习小结

    1.知识结构

    二元一次方程,二元一次方程组,二元一次方程组的解法。

    2.注意事项  

    (1)在实际问题中,常会遇到有多个未知量的问题,和一元一次方程一样,二元一次方程组也是反映现实世界数量之间相等关系的数学模型之一,要学会将实际问题转化为二元一次方程组,从而解决一些简单的实际问题。

    (2)二元一次方程组的解法很多,但它的基本思想都是通过消元,转化为一元一次方程来解的,最常见的消元方法有代人法和加减法。一个方程组用什么方程来逐步消元,转化应根据它的特点灵活选定。

    (3)通过列方程组来解某些实际问题,应注意检验和正确作答,检验不仅要检查求得的解是否适合方程组的每一个方程,更重要的是要考察所得的解答是否符合实际问题的要求。

    二、课堂练习

    1.求二元一次方程3x+y=10的正整数解。

    分析:求二元一次方程的解的方法是用一个未知数表示另一个未知数,如y=10-3x,给定x一个值,求出y的一个对应值,就可得到二元一次方程的一个解,而此题是对未知数x、y作了限制必须是正整数,也就是说对于给定的x可能是1、2、3、4…但是当x=4时,y= 10-3×4=-2,y却不是正整数,因此x只能取正整数的一部分,即x= 1,x=2,x=3。


第九章不等式与不等式组

9.1.1不等式及其解集

教学目标

1、感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,通过解决简单的实际问题,使学生自发地寻找不等式的解,会把不等式的解集正确地表示到数轴上;

2、经历由具体实例建立不等模型的过程,经历探究不等式解与解集的不同意义的过程,渗透数形结合思想;

3、通过对不等式、不等式解与解集的探究,引导学生在独立思考的基础上积极参与对数学问题的讨论,培养他们的合作交流意识;让学生充分体会到生活中处处有数学,并能将它们应用到生活的各个领域。

教学重点:建立方程解决实际问题,会解“ax+b=cx+d”类型的一元一次方程

教学难点:正确理解不等式、不等式解与解集的意义,把不等式的解集正确地表示到数轴上。

教学过程

1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?

2、一辆匀速行驶的汽车在11:20时距离A地50千米。要在12:00以前驶过A地,车速应该具备什么条件?若设车速为每小时x千米,能用一个式子表示吗?

探究新知

(一)不等式、一元一次不等式的概念

1、     在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“并”表示不等关系的式子也是不等式。

2、下列式子中哪些是不等式?

(1)a+b=b+a(2)-3>-5(3)x≠l(4)x十3>6(5)2m<n(6)2x-3

上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式.

3、小组交流:说说生活中的不等关系.

分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言,在此基础上引出不等号“≥”和“≤”.补充说明:用“≥”和“≤”表示不等关系的式子也是不等式.

(二)不等式的解、不等式的解集

问题1.要使汽车在12:00以前驶过A地,你认为车速应该为多少呢?

问题2.车速可以是每小时85千米吗?每小时82千米呢?每小时75.1千米呢?每小时74千米呢?

问题3.我们曾经学过“使方程两边相等的未知数的值就是方程的解”,

76,73,79,80,74.9,75.1,90,60

你能找出这个不等式其他的解吗?它到底有多少个解?你从中发现了什么规律?

一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集.求不等式的解集的过程叫做解不等式.

1、     巩固新知下列哪些是不等式x+3>6的解?哪些不是?

-4,-2.5,0,1,2.5,3,3.2,4.8,8,12

2、直接想出不等式的解集,并在数轴上表示出来:(1)x+3>6(2)2x<8(3)x-2>0

拓广探索:比较分析对于问题1还有不同的未知数的设法吗?

9.1.2不等式的性质(一)

教学目标1、经历通过类比、猜测、验证发现不等式性质的探索过程,掌握不等式的性质;

2、初步体会不等式与等式的异同;3、通过创设问题情境和实验探究活动,积极引导学生参与数学活动,提高学习数学的兴趣,增进学习数学的信心,体会在解决问题的过程中与他人交流合作的重要性.

教学重点:理解并掌握不等式的性质。

教学难点:正确运用不等式的性质。

教学过程(师生活动)

提出问题:教师出示天平,并请学生仔细观察老师的操作过程,回答下列问题:

1、天平被调整到什么状态?

2、给不平衡的天平两边同时加人相同质量的砝码,天平会有什么变化?

3、不平衡的天平两边同时拿掉相同质量的砝码,天平会有什么变化?

4、如果对不平衡的天平两边砝码的质量同时扩大相同的倍数,天平会平衡吗?缩小相同的倍数呢?

探究新知1、用“>”或“<”填空.

(1)-1<3-1+23+2-1-33-3     (2)5>35+a3+a5-a3-a

(3)6>26×52×56×(-5)2×(-5)(4)-2<3(-2)×63×6     (-2)×(-6)3×(一6)

(5)-4>-6(-4)÷2(-6)÷2          (-4)十(-2)(-6)十(-2)

2、从以上练习中,你发现了什么?请你再用几个例子试一试,还有类似的结论吗?请把你的发现告诉同学们并与他们交流.

3、让学生充分发表“发现”,师生共同归纳得出:

不等式性质1:不等式两边都加上(或减去)同一个数(或式子),不等号的方向不变.

不等式性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.

不等式性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变.

4、你能说出不等式性质与等式性质的相同之处与不同之处吗?

探究新知

1.下列哪些是不等式x+3>6的解?哪些不是?-4,-2.5,0,1,2.5,3,3.2,4.8,8,12

2、直接想出不等式的解集,并在数轴上表示出来:(1)x+3>6(2)2x<8(3)x-2>0

巩固新知

1.判断

9.1.2不等式的性质(二)

教学目标:

1、会根据“不等式性质1"解简单的一元一次不等式,并能在数轴上表示其解集;

2、学会运用类比思想来解不等式,培养学生观察、分析和归纳的能力;

3、在积极参与数学活动的过程中,培养学生大胆猜想、勇于发言与合作交流的意识和实事求是的态度以及独立思考的习惯.

教学重点:根据“不等式性质1”正确地解一元一次不等式。

教学难点:根据“不等式性质1”正确地解一元一次不等式。

教学过程(师生活动)

提出问题:小希就读的学校上午第一节课上课时间是8点开始.小希家距学校有2千米,而他的步行速度为每小时10千米.那么,小希上午几点从家里出发才能保证不迟到?

1、若设小希上午x点从家里出发才能不迟到,则x应满足怎样的关系式?

2、你会解这个不等式吗?请说说解的过程.

你能把这个不等式的解集在数轴上表示出来吗?

1、探究新知分组探讨:对上述三个问题,你是如何考虑的?先独立思考然后组内交流,作出记录,最后各组派代表发主。

2、在学生充分讨论的基础上,师生共同归纳得出:

2、例题

解下列不等式,并在数轴上表示解集:(1)3x<2x+1(2)3-5x≥4-6x

师生共同探讨后得出:上述求解过程相当于由3x<

2x+1,得3x-2x<1;由3-5x≥4-6x,得-5x+6x≥4-3.这类似于解方程中的“移项”.可见,解不等式也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.

最后由教师完整地板书解题过程.

巩固新知

1、解下列不等式,并在数轴上表示解集:(1)x+5>-1(2)4x<3x-5(3)8x-2<7x+3

2、用不等式表示下列语句并写出解集:(1)x与3的和不小于6;(2)y与1的差不大于0.

解决问题

1、某容器呈长方体形状,长5cm,宽3cm,高10cm.容器内原有水的高度为3cm。现准备继续向它注水.用Vcm,示新注入水的体积,写出V的取值范围。

2、三角形任意两边之差与第三边有着怎样的大小关系?

总结归纳:师生共同归纳本节课所学内容:通过学习,我们学会了简单的一元一次不等式的解法。还明白了生活中的许多实际问题都是可以用不等式的知识去解决的。

布置作业:教科书第128页习题9.1第6题

9.1.2不等式的性质(3)

教学目标1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;

2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;

3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。

教学重点:熟练并准确地解一元一次不等式。

教学难点:熟练并准确地解一元一次不等式。

教学过程(师生活动)

提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.

探究新知

1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.

2、例题.

解下列不等式,并在数轴上表示解集:

解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?

总结归纳:围绕以下几个问题:

1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?

让学生自己归纳,教师仅做必要的补充和点拨.

布置作业:教科书第128~129页 习题9.1第6题(3)(4)第10题。

 

9.2一元一次不等式的解法(一)

 

教学目的:1、了解一元一次不等式的概念。

           2、掌握一元一次不等式的解法。

教学重点:一元一次不等式的解法。

教学难点:不等式性质3的应用。

教学过程:

一、复习

1、写出下列各不等式的解集:

1)x+2>5        

2)x+2≥5       

3)x+2<5    

4)x+2≤5    

2、化简

1)2x≤5    (不等式性质   )

2)x-10≥-7    (不等式性质   )

3、解方程3(1-x)=2(x+9)的步骤是        

二、新授

1、一元一次不等式的概念

   不等式经过变形后能化为ax<b或ax>b,其中x是未知数,a、b是已知数,并且a≠0。

   特征:只含有一个未知数,未知数的次数是1(系数不等于0)。

   同方程类似,ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式。

2、例1:解下列不等式,并在数轴上表示解集

(1)                          (2)

3、练习(1)2(2x-3)<5(x-1)   (2)10-3(x+6)≤1

三、课堂小结

   本节课学习了一元一次不等式的概念和解法。

   1、一元一次不等式的定义和一元一次方程的区别在于一个是不等式,另一个是方程;

   2、一元一次不等式的解法和一元一次方程的解法步骤一样,即去分母、去括号、移项、合并同

类项、系数化成1,唯一要注意的是在去分母和系数化成1的过程中,若遇到同乘以(或同除以)同

一个负数时,不等号要改变方向。

四、作业:B组:教材P126第1题(1)(2)

          A组:教材P126第1题(3)(4)


9.2一元一次不等式的解法(二)

 

教学目的:1、进一步掌握一元一次不等式的解法(解含有分母的一元一次不等式)。

           2、能够运用不等式解决简单的运用问题

教学重点:去分母和系数化为1的应用

教学难点:不等式性质3的应用。

教学过程:

一、复习

1、一元一次不等式的概念

2、解一元一次不等式的基本步骤与注意的一些方面

3、解下列一元一次不等式,并把解集在数轴上表示

第(2)题学生板演练习,然后共同点评

2、小结:解一元一次不等式的一般步骤

去分母,去括号,移项,合并同类项,系数化为1(考虑不等号方向是否要改变)

3、练习,教材P124第1题(3)、(4);第2题(4)

4、练习,教材P126经2,3题

三、总结

四、作业:教材P126第1题(3)——(6)

9.2一元一次不等式的应用(一)

 

教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;

2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;

3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

教学重点:寻找实际问题中的不等关系,建立数学模型。

教学难点:弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。

教学过程(师生活动)

提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?

探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.

2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:

(1)什么情况下,到甲商场购买更优惠?

(2)什么情况下,到乙商场购买更优惠?

(3)什么情况下,两个商场收费相同?

3、我们先来考虑方案:

设购买x台电脑,如果到甲商场购买更优惠.

问题1:如何列不等式?

问题2:如何解这个不等式?

在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x

去括号,得

去括号,得:6000+4500x-45004<4800x

移项且合并,得:-300x<1500

不等式两边同除以-300,得:x<5

答:购买5台以上电脑时,甲商场更优惠.

4、让学生自己完成方案(2)与方案(3),并汇报完成情况.

教师最后作适当点评.

解决问题甲、乙两个商场以同样的价格出售同样的商品,同时又各自推出不同的优惠措施.甲商场的优惠措施是:累计购买100元商品后,再买的商品按原价的90%收费;乙商场则是:累计购买50元商品后,再买的商品按原价的95%收费.顾客选择哪个商店购物能获得更多的优惠?

问题1:这个问题比较复杂.你该从何入手考虑它呢?

问题2:由于甲商场优惠措施的起点为购物100元,乙商场优惠措施的起点为购物50元,起点数额不同,因此必须分别考虑.你认为应分哪几种情况考虑?

分组活动.先独立思考,再组内交流,然后各组汇报讨论结果.

最后教师总结分析:

1、如果累计购物不超过50元,则在两家商场购物花费是一样的;

2、如果累计购物超过50元但不超过100元,则在乙商场购物花费小。

3、如果累计购物超过100元,又有三种情况:

(1)什么情况下,在甲商场购物花费小?

(2)什么情况下,在乙商场购物花费小?

(3)什么情况下,在两家商场购物花费相同?

上述问题,在讨论、交流的基础上,由学生自己解决,教师可适当点评。

总结归纳:通过体验买电脑、选商场购物,感受实际生活中存在的不等关系,用不等式来表示这样的关系可为解决问题带来方便.由实际问题中的不等关系列出不等式,就把实际问题转化为数学问题,再通过解不等式可得到实际问题的答案.

布置作业:教科书第134页习题9.2第1题(1)(2)第3题1、2。

9.2一元一次不等式的应用(二)

教学目标1、会根据实际问题中的数量关系建立数学模型,学会用去分母的方法解一元一次不等式;

2、通过去分母的方法解一元一次不等式,让学生了解数学中的化归思想,感知不等式与方程的内在联系;

3、结合实际,创设活泼有趣的情境,提高学生的学习兴趣.让他们在活动中获得成功的体验,激发起求知的欲望,增强学习的自信心.

教学重点:列不等式解决问题中如何建立不等式关系,并根据不等关系列出不等式。

教学难点:在实际问题中如何建立不等关系,并根据不等关系列出不等式。

教学过程(师生活动)

复习巩固解下列不等式:

①5x+54<x-1  ②2(1一3x)>3x+20  ③2(一3+x)<3(x+2)④(x+5)<3(x-5)-6

先让学生板演、练习,然后师生共同点评、订正,指出解题中应注意的地方,复习一元一次不等式的解法.

提出问题2002年北京空气质量良好(二级以上)的天数与全年天数之比达到55%.若到2008年这样的比值要超过70%,那么,2008年北京空气质量良好(二级以上)的天数至少要增加多少天?

解决问题:1、2002年北京空气质量良好的天数是多少?

2、用x表示2008年增加的空气质量良好的天数,则2008年北京空气质量良好的天数是多少?

3、2008年共有多少天?与x有关的哪个式子的值应超过70%?这个式子表示什么?

总结归纳:师生共同归纳解一元一次不等式的一般步骤,并与解一元一次方程再次进行比较。

 

9.2一元一次不等式应用(三)

 

教学目标1、会根据实际向题中的数量关系列不等式解决问题,熟练掌握一元一次不等式的解法;

2、初步感知实际问题对不等式解集的影响,培养学生的数学建模能力和分析问题、解决问题的能力;

3、通过开放性问题的设计,增强学生的创新意识和挑战自我意识,激发学习兴趣.

教学重点:根据题意,分析各类问题中的数量关系,会熟练列不等式解应用问题。

教学难点:把生活中的实际问题抽象为数学问题。

教学过程(师生活动)

引入新课前面我们结合实际问题,讨论了如何根据数量关系列不等式以及如何解不等式.在本节课上,我们将进一步探究如何用一元一次不等式解决生活中的一些实际问题.

提出问题某次知识竞赛共有20道题.每道题答对加10分,答错或不答均扣5分:小跃要想得分超过90分,他至少要答对多少道题?

探究新知1、与题目数量有什么关系?

2、跃答对了x道题,则如何用含有x的式子表示得分?

3、不等式应用题的解法.

教师在学生充分讨论的基础上板书解题过程,并指出:用不等式解应用问题时,必须注意对未知数的限制条件.

解决问题某班为了从甲、乙两同学中选出班长,进行了一次演讲答辩与民主测评活动.聘请A,B,C,D,E五位老师为评委,对演讲答辩进行评分;全班50位同学参与了民主测评.

规定:演讲答辩得分按“去掉一个最高分和一个最低分,再算平均分”的方法确定;民主测评得分一“好”票数×2分十“较好”票数×l分+“一般”票数×.综合得分一演讲答辩得分×(1-a)+民主测评得分×a(0≤a≤0.8

(1)当a=0.6时,甲的综合得分是多少?

(2)a在什么范围时,甲的综合得分高?a在什么范围时,乙的综合得分高?

 

9.3一元一次不等式组(一)

 

教学目标1.了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;

2.经历知识的拓展过程,感受学习一元一次不等式组的必要性;

3.逐步熟悉数形结合的思想方法,感受类比与化归的思想。

教学重点:一元一次不等式组的解集和解法。

教学难点:一元一次不等式组解集的理解

教学过程(师生活动)

创设情境:提出问题小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为72千克,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地。后来,小宝借来一副质量为66千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.猜猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克,

(1)从跷跷板的状况你可以概括出怎样的不等关系?

(2)你认为怎样求x的范围,可以尽可能地接近小宝的体重?

在讨论或议论中,列出不等式:

2x十x<72

2x十x+6>72

其中x同时满足以上两个不等式.

在议论的基础上,老师揭示:

一个量需要同时满足几个不等式的例子,在现实生活中还有很多.

类比探索引出新知问题2

现有两根木条a和b,a长10cm,b长3cm.如果再找一根木条。,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?

等式的性质1。

如果设木条长xcm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x<10+3和x>10-3.

类似于方程组,引出一元一次不等式组的概念和记法.

类比方程组的解,引出一元一次不等式组的解集的概念.

利用数轴,师生一起将问题1、问题2的解集求出来.

解法探讨出示教科书例1,解下列不等式组:

小组讨论:根据不等式组的解集的意义,你觉得解决例1需要哪些步骤?在这些步骤中,哪个是我们原有的知识,哪个是我们今天获得的新方法?

在讨论的基础上,师生一起归纳解一元一次不等式组的步骤:(1)求出各个不等式的解集;(2)找出各个不等式的解集的公共部分(利用数轴).

师生一起完成例1.

巩固练习:学生练习:教科书习1

教师巡视、指导,师生共同评讲

小结与作业

1.课堂小结这节课你学到了什么?有哪些感受?

2.教师归纳:学习一元一次不等式组是数学知识拓展的需要,也是现实生活的需要;学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念;求不等式组的解集时,利用数轴很直观,也很快捷,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验.

 

9.3一元一次不等式组(二)

 

教学目标1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;

2、理解一元一次不等式组应用题的一般解题步骤,逐步形成分析问题和解决问题的能力;

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

教学重点:建立不等式组解实际问题的数学模型。

教学难点:正确分析实际问题中的不等关系,列出不等式组。

教学过程(师生活动)

一、复习归纳

在习题9.3第1题中,我们知道以下不等式组与解集的对应关系

老师推荐一个口诀帮助大家记忆:

小小取小;大大取大;大小小大取中间;大大小小取无聊。

探究实际问题出示教科书例2(略)

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

归纳小结1、教科书上的“归纳”

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)

一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表

设列解(结果)答

一元一次不等式组一个未知数找不等关系一个范围根据题意写出答案

二元一次不等式组两个未知数找等量关系一对数

教师揭示:列不等式解应用题时,(1)不等号方向要符合实际的数量关系,不能颠倒;(2)未知数所代表的量要确切,不能含含糊糊.

练习:

某校在一次参观活动中,把学生编为8个组,若每组比预定人数多1人,则参观人数超过200人,若每组比预定人数少2人,则参观人数不大于184人,试求预定每组学生的人数.

教师巡视、指导、调控。

 

第九章   不等式与不等式组 

小结与复习(1) 

教学目标目标

1.巩固运用不等式的性质;

2.会运用不等式的基本性质解一元一次不等式(组),并会借助数轴确定不等式(组)的解集。

3.让学生领会数形结合、类比、分类讨论等解题思想。

4.感受数学与生活密切相关,提高学习数学的积极性。

教学重点:弄清本章所学的重点概念、性质和相关知识。

教学难点:体验运用数形结合思想方法。

学法指导

1、             类比方程学习不等式

2、             数形结合的思想方法解决有关问题

教学过程

.基本知识点回顾

 1. 一般的,_________叫做不等式。

2. 不等式的基本性质

3. 一元一次不等式和一元一次不等式组

二.知识运用

1、如图⑴所示,天平右盘中的每个破码的质量都是1g,则物体 A的质量m(g)的取值范围            。

三、课堂训练

1.①a的2倍与7的差是非负数,根据题意列不等式为______

②某隧道限速为60km/h,一辆在隧道中行驶速度为vkm/h的轿车被交警处罚,用不等式解释:原因是         ;

2.根据下图所示,对a、b、c三种物体的重量判断正确的是 (      ) 



第九章  不等式与不等式组

小结与复习(2)

教学目的:

        1、进一步掌握不等式与不等式组的解法

        2、进一步掌握列不等式(组)解决实际问题

教学重点:列不等式(组)解应用题

教学难点:找出问题中的不等关系,并列出不等式

教学方法:讲练结合

教学过程:

一、解下列不等式(组)

三、小结

四、练习:

1、某次数学测验,共16个选择题,评分标准为:;对一题给6分,错一题扣2分,不答不给分.某个学生有1题未答,他想自己的分数不低于70分,他至少要对多少题?

2、国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表:

类别

电视机

洗衣机

为进价(元/台)

1800

1500

售价(元/台)

2000

1600

计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元.

(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)

(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润.(利润=售价-进价)

五、作业:练习册P47-50中的应用题


第十章 数据的收集、整理与描述

10.1统计调查(一)

教学目标1、了解全面调查的概念;2、会设计简单的调查问卷,收集数据;3、掌握划记法,会用表格整理数据;4、会画扇形统计图,能用统计图描述数据;5、经历统计调查的一般过程,体验统计与生活的关系.

教学重点:全面调查的过程(数据的收集、整理、描述)

教学难点:绘制扇形统计图

教学过程

一、问题导入

在日常生活中,我们可能遇到下面一些问题:

(1)中央电视台《青年歌手大奖赛》的收视情况怎样?

(2)班级里同学出生主要集中在哪一年?

(3)本年度最受欢迎的影片是哪几部?

要解决这些问题,需要进行统计调查。

二、数据的收集

问题1:现在我们如果要了解全班同学对新闻、体育、动画、娱乐四类电视节目的喜爱情况,你怎样才能知道结果?

举手表决、问卷调查等。

问卷调查是一种比较常用的调查方式,采用这种方式要设计好调查问卷。

你认为设计调查问卷应包括哪些内容?

问卷设计的内容应包括调查中所提的问题、答案选项以及要求等。

就上面的问题我们可以设计如下的调查问卷:、

如果想了解男、女生喜爱节目的差异,问卷中还应该包含什么内容?

应加“男□女□(打勾)”这一项.

问卷设计好后,请每位同学填写,然后收集起来。例如,调查的结果是:

DCADBCADCD          CDABDDBCDB

DBDCDBDCDB          ABBDDDCDBD

注意:用字母代替节目的类型,可方便统计.

三、数据的整理

从上面的数据中你容易看出全班同学喜爱各类节目的情况吗?为什么?

不容易。因为这些数据杂乱无章,不容易发现其中的规律。

为了更清楚地了解数据所蕴含的规律,需要对数据进行整理。你认为应该怎样整理我们收集到的数据?

划“正”字。这就是所谓的划记法

下面我们利用下表整理数据。

全班同学最喜爱节目的人数统计表:

 

上表可以清楚地反映全班同学喜爱各类节目的情况。

四、数据的描述

为了更直观地看出上表中的信息,我们还可以用条形统计图扇形统计图来描述数据。

绘制条形统计图[投影7]

绘制扇形统计图

我们知道,扇形图用圆代表总体,每一个扇形代表总体的一部分。扇形图通过扇形的大小来反映各个部分占总体的百分比。扇形的大小是由圆心角的大小决定的,所以,我们只要知道圆心角的度数就可以画出代表某一部分的扇形。

因为组成扇形图的各扇形圆心角的和是3600,所以只需根据各类节目所占的百分比就可以算出对应扇形圆心角的度数。

新闻:3600×10%≈360

体育:3600×25%=900

动画:3600×20%=720

娱乐:3600×45%=1620.

在一个圆中,根据算得的圆心角的度数画出各个扇形,并注明各类节目的名称及相应的百分比。[投影8]

你能根据上面的条形统计图和扇形统计图直接说出全班同学喜爱各类电视节目的情况吗?

在上面的调查中,我们利用调查问卷得到全班同学喜爱电视节目的数据,利用表格整理数据,并用统计图进行直观形象的描述。通过分析表和图,了解到了全班同学喜爱电视节目的情况。在这个调查中,全班同学是要考察的全体对象,我们对全体对象都进行了调查,像这样考察全体对象的调查叫做全面调查。例如,2000年我国进行的第五人口普查,就是一次全面调查。

请你举出一些生活中运用全面调查的例子.

五、课堂练习

六、课堂小结

1、本节课我们经历了全面调查的一般过程,知道了利用问卷调查来收集数据,利用表格来整理数据,利用条形统计图和扇形统计图来描述数据。

2、学会了设计调查问卷和扇形统计图的画法。

 

10.1统计调查(二)

 

教学目标1、经历数据的收集、整理和分析的模拟过程,了解抽样调查、样本、个体与总体等统计概念;2、初步感受抽样调查的必要性,初步体会用样本估计总体的思想。

教学重点:抽样调查、样本、总体等概念以及用样本估计总体的思想

教学难点:样本的抽取

教学过程

一、问题导入

要了解一罐八宝粥里各种成分的比例,你会怎么做?把一罐八宝粥铺开在一个盆子里查看。这样可行吗?这样方便吗?为此我们必须找到一种方便合理的调查方法才行。

二、抽样调查及有关概念

问题2某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,怎样进行调查?

可以用全面调查的方法对全校学生逐个进行调查,然后整理收集到的数据,统计出全校学生对四类电视节目的喜爱情况。

这样做,当然好,可以准确、全面地了解情况。但是,由于学生人数比较多,这样做又会有许多弊病,你能说说吗?

花费的时间长,消耗的人力、物力大。你能找到一种既省时省力又能解决问题的调查方法吗?

可以抽取一部分学生进行调查.

这种只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的方法就是抽样调查。这里要考查的全体对象称为总体,组成总体的每一个考查对象称为个体,被抽取的那些个体组成一个样本,样本中个体的数目称为样本容量。上面问题中全校学生是总体,每一名学生是个体,我们从总体中抽取的部分学生是一个样本,抽取的学生数就是样本容量。例如抽取100名学生,样本容量就是100。

注意:抽样调查还适用一些具有破坏性的调查,如关于灯泡寿命、火柴质量等。

三、样本的抽取

抽样调查的关键是样本的抽取,如果抽取的样本得当,就能很好地反映总体的情况,否则,抽样调查的结果会偏离总体情况。上面的问题,抽取样本的要求是什么呢?

一、抽取的学生数目要适当。如果抽取的学生数太少,那么样本就不能很好地反映总体的情况;如果抽取的学生人数太多,那么达不到省时省力的目的。我们可以取100名学生作为一个样本。

二、要尽量使每一个学生抽取到的机会相等。例如,可以在2000名学生的注册学号中,用电脑随机抽取100个学号,调查这些学号对应的100名学生。

你还能想出使每个学生都有相等机会被抽到的方法吗?

从2000名学生的注册学号中,用电脑抽取能被5整除的100个学号,调查这些学号对应的学生;放学或上学时在校门口随机访问100名学生,等等。

这种总体中的每一个个体都有相等机会被抽到的抽样方法是一种简单随机抽样

现在你能回答“要了解一罐八宝粥里各种成分的比例,你会怎么做?”这个问题了吗?

搅拌均匀后,舀一勺查看,用所得的结果估计这罐八宝粥成分的比例。

四、样本的处理

和全面调查一样,对收集的数据要进行整理。下面是某同学抽取样本容量为100的调查数据统计表。

抽样调查100名学生最喜爱节目的人数统计表


五、课堂练习

六、课堂小结

1、个体、总体、样本、样本容量及抽样调查的概念;

2、抽取样本的要求:(1)抽取的样本容量要适当;(2)要尽量使每一个个体被抽取到的机会相等——简单随机抽样。

3、全面调查和抽样调查的优缺点是什么?

全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查;抽样调查具有花费少、省时的特点,但没有全面调查准确,受样本选取的影响比较大。

 

10.1统计调查(三)

 

教学目标1、经历较复杂问题的处理过程,感受分层抽样的必要性,掌握分层抽样的方法;2、学会从样本中分析、归纳出较为正确的结论,增强用统计方法解决问题的意识。

教学重点:分层抽样的方法和样本的分析、归纳

教学难点:分层抽样方案的制定

教学过程

一、复习导入

      什么是抽样调查?什么是简单随机抽样?

   仔细观察我们身边周围,抽样调查的应用是十分普遍的。有些问题总体量不大,个体差异程度小,只需进行简单随机抽样就可以了,有些问题总体量大,个体差异程度较大,必须有更好的抽样方法才行。

二、分层抽样

问题3某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐四类节目的喜爱情况。

(1)能不能用问题2中对学生的调查数据去估计整个地区电视观众的情况呢?为什么?

不能。一是样本容量太小;二是学生、成年人、老年人喜欢的电视节目往往有明显不同.

所以要了解整个地区观众的情况,需要在更大范围内抽取样本。

(2)如果抽取一个容量为1000的样本进行调查,你会怎样调查?

由于各年龄段对节目爱好有明显的不同,而同一个年龄段对节目的喜爱又存在共性,因此可以对青少年、成年人、老年人各人群分别独立进行简单随机抽样,使每个年龄段都能抽取一定的人数来代表所在的人群,然后汇总调查结果。

这里还有一个问题,每个年龄段抽取的人数怎么确定呢?

可以根据各年龄段实际人口的比例分配,以确保每一个年龄段都有相应比例的代表。

如果青少年、成年人、老年人的人数比例为2︰5︰3,那么各年龄段抽取的人数分别是多少?

此外,还可以估计各个年龄段中观众对某类节目喜爱的情况。

例如,估计各个年龄段中观众对动画类节目和娱乐类节目喜爱的情况。

能根据上表中的数据进行估计吗?为什么?不能。因为不同年龄层抽取的人数不相等。

那么根据什么来进行估计呢?

可根据不同年龄层中喜爱动画和娱乐类节目的百分比来估计。如表:


青少年

成年人

老年人

动画

28%

11.2%

9.3%

娱乐

39%

37.6%

23.3%

从表中你看到了什么?不同年龄段的观众对节目喜爱不尽相同。

用什么方式可以直观地反映这种变化呢?折线统计图。

下图是不同年龄段观众喜爱娱乐和动画类节目的折线统计图。

从上图中可以清楚地看到,随着年龄的增加,观众对动画类、娱乐类的喜爱程度逐渐下降。

四、课堂练习:

五、课堂小结

1、对于总体量大,个差异程度较大的问题,需要采取分层抽样的方法确定样本,这样可使样本更具有代表性。

2、对样本进行分析、归纳,得出的结论可以用来估计总体的情况,这就是统计的思想。

布置作业:

10.2直方图(一)

 

教学目标1、理解频数、频数分布的意义,学会制作频数分布表;2、学会画频数分布直方图和频数折线图。

教学重点:学会画频数分布直方图

教学难点:确定组距和组数

教学过程

一、导入新课

收集数据、整理数据、描述数据是统计的一般过程。我们学习了条形图、折线图、扇形图等描述数据的方法,今天我们学习另一种描述数据的统计图——直方图。

二、频数分布直方图

问题4为了参加全校各年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛。为此收集到这63名同学的身高(单位:㎝)如下:

158

158

160

168

159

159

151

158

159

168

158

154

158

154

169

158

158

158

159

167

170

153

160

160

159

159

160

149

163

163

162

172

161

153

156

162

162

163

157

162

162

161

157

157

164

155

156

165

166

156

154

166

164

165

156

157

153

165

159

157

155

164

156

选择身高在哪个范围的学生参加呢?

为了使选取的参赛选手身高比较整齐,需要知道数据(身高)的分布情况,即在哪些身高范围内的学生比较多。

为此我们把这些数据适当分组来进行整理。

1、计算最大值与最小值的差(极差)最小值是149,最大值是172,它们的差是23。

说明身高的变化范围是23㎝.

2、决定组距与组数

把所有的数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距

作等距分组(各组的组距相同),取组距为3㎝(从最小值起每隔3㎝作为一组)。


可见,频数分布直方图是以小长方形的面积来反映数据落在各个小组内的频数的多少。

等距分组时,各小长方形的面积(频数)与高的比是常数(组距)。因此,画等距分组的频数分布直方图时,为画图与看图方便,通常直接用小长方形的高表示频数。

这样,上面的频数分布图可画成下面的形式:

三、频数分布折线图

在频数分布直方图的基础上,我们还可以用频数折线图来描述频数的分布情况。

首先取直方图的每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距。

例如,在上面的直方图的左边取点(147.5,0),在直方图右边取点(174.5,0),将所取的这些点用线段依次连接起来,就得到频数分布折线图。

四、课堂小结

频数分布直方图是描述数据的又一方式,画频数分布直方图的关键是确定组距和组数,而这一点没有固定的标准,要凭借经验和所研究的具体问题来决定。频数分布折线图也是描述频数分布情况的一种方式。

作业

10.2直方图(二)

 

教学目标:掌握频数分布直方图和频数折线图的画法,并能用频数分布直方图解释数据中蕴含的信息,进一步体会统计图表在描述数据中的作用。

教学重点:画频数分布直方图

教学难点:解释数据中蕴含的信息

教学过程

一、复习导入

上节课我们学习了画频数分布图,回忆一下,画频数分布直方图有哪些步骤?怎样确定组距和组数?

二、例题

看下面的例子:

为了考察某种大麦穗长的分布情况,在一块试验田时抽取了100个麦穗,量得它们的长度如下表(单位:㎝):

6.5

6.4

6.7

5.8

5.9

5.9

5.2

4.0

5.4

4.6

5.8

5.5

6.0

6.5

5.1

6.5

5.3

5.9

5.5

5.8

6.2

5.4

5.0

5.0

6.8

6.0

5.0

5.7

6.0

5.5

6.8

6.0

6.3

5.5

5.0

6.3

5.2

6.0

7.0

6.4

6.4

5.8

5.9

5.7

6.8

6.6

6.0

6.4

5.7

7.4

6.0

5.4

6.5

6.0

6.8

5.8

6.3

6.0

6.3

5.6

5.3

6.4

5.7

6.7

6.2

5.6

6.0

6.7

6.7

6.0

5.5

6.2

6.1

5.3

6.2

6.8

6.6

4.7

5.7

5.7

5.8

5.3

7.0

6.0

6.0

5.9

5.4

6.0

5.2

6.0

6.3

5.7

6.8

6.1

4.5

5.6

6.3

6.0

5.8

6.3

列出样本的频数分布表,画出频数分布直方图。

解:1、计算最大值与最小值的差是多少?

最大值-最小值的差:7.4-4.0=3.4(㎝)

2、决定组距和组数:组距取多少时组数合适?

穗个数很少,总共只有7个。

三、课堂练习

练习(1)你认为组距是多少比较合适?为什么?

5组,因为100个数据以内可以分5~12组,这里有48个数据,分5组或6组比较合适。

(2)画出直方图。

作业

 

第十章 数据收集、整理与描述  本章小结(一)

 

教学目的:

1、进一步掌握本章知识结构

2、能够运用知识点解决有关实际问题

教学重点:对知识点有系统的理解和达到知识点的灵活运用

教学难点:知识的灵活运用

教学方法:讲练结合

二、回顾与思考

1、统计调查的一般过程是什么?统计调查对我们有什么帮助?

统计调查一般包括收集数据、整理数据、描述数据和分析数据等过程;可以帮助我们更好地了解周围世界,对未知的事物作出合理的推断和预测。

2、全面调查和抽样调查是收集数据的两种方式。什么是全面调查?什么是抽样调查?它们各有什么优缺点?

考察全体对象的调查叫做全面调查

只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种方法是抽样调查

全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些具有破坏性的调查不宜用全面调查;抽样调查花费少、时间短,节省人力、物力、财力,破坏性小;结果往往不如全面调查准确,且样本选取不当,会增大估计总体的误差。

3、实际调查中常常采用抽样调查的方法获取数据。抽样调查的要求是什么?

(1)每个个体被抽到的机会相同;(2)样本容量要适当。

4、利用统计图表描述数据是统计分析的重要环节。对于收集到的数据加以整理,并用统计图表描述出来,这有什么作用?

帮助我们从数据中获得信息,得出结论。

5、如何画扇形图、频数分布直方图和频数分布折线图?各种统计图都有什么特点?

根据各部分所占的百分比计算出各部分所对应的圆心角,从而把一个圆分成几部分,标上百分比,写出名称,就得到了扇形统计图。

绘制频数分布直方图:①计算最大值与最小值的差;②决定组距和组数;

③列频数分布表         ④画频数分布直方图。

首先取直方图中每一个长方形上边的中点,然后在横轴上直方图的左右取两个频数为0的点,它们分别与直方图左右相距半个组距,将所取的这些点用线段依次连接起来,就得到频数折线图。

条形图能够显示每组中的具体数据;扇形图能够显示部分在总体中所占的百分比;折线图能够显示数据的变化趋势;频数分布直方图能够显示数据的分布情况。

三、练习提高:课本P158第1-6题。


第十章 数据收集、整理与描述  本章小结(二)

教学目的:能够运用知识点解决有关实际问题

教学重点:对知识点有系统的理解和达到知识点的灵活运用

教学难点:知识的灵活运用

教学方法:讲练结合

教学过程:

一、例题导引

例1测得某市2月份1~10日最低气温随日期变化折线图如图所示。(1)最高气温为2℃的天数为天;(2)该市这10天气温变化趋势图;(3)写一条有关的结论:.

例2某校学生在“暑假社会实践”活动中组织学生进行社会调查,并组织评委对学生写的调查报告进行统计,绘制了统计图,请根据该图回答下列问题:(1)学生会抽取了多少份调查报告?(2)若等第A为优秀,则优秀率为多少?(3)学生会共收到调查报告1000份,请估计该校有多少份调查报告的等第为E?

例3初中学生的视力状况已受到全社会的广泛关注。某市有关部门对全市20万名初中学生视力状况进行了一次抽样调查,从中随机抽查了10所中学全体学生的视力情况,图(1)、图(2)是2004年抽样情况统计图。请你根据两图解答以下问题:(1)2004年这10所中学学生的总人数是多少?(2)2004年这10所中学学生的视力在4.35以上的人数占全市中学生总人数的百分比是多少?(3)2004年该市参加中考的学生达66000人,请你估计2004年该市这10所中学参加中考的学生共有多少人?


点击阅读原文下载全册PPT课件动画教案习题整套资料

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存