高中数学《空间直线、平面的平行》微课精讲+知识点+教案课件+习题
扫码查看下载 全部资源 |
▼
视频教学:
知识点:
教案:
教材分析
直线与直线平行是所有平行关系的基础,在初中已经学过平行四边形,中位线与底边等平行关系,本节教材重点介绍了平面的基本事实4,等角定理,对平面中直线与直线的平行关系进一步深化.也为后续线面平行、面面平行打下基础.
教学目标与核心素养
课程目标
1.正确理解基本事实4和等角定理;
2.能用基本事实4和等角定理解决一些简单的相关问题.
数学学科素养
1.直观想象:基本事实4及等角定理的理解;
2.逻辑推理:基本事实4及等角定理的应用.
教学重难点
重点:能用基本事实4和等角定理解决一些简单的相关问题.
难点:能用基本事实4和等角定理解决一些简单的相关问题.
课前准备
教学方法:以学生为主体,小组为单位,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程
一、 情景导入
我们知道,在同一平面内,不相交的两条直线是平行直线,并且当两条直线都与第三条直线平行时,这两条直线互相平行.在空间中,是否也有类似的结论?举例说明.
要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探.
二、预习课本,引入新课
阅读课本133-135页,思考并完成以下问题
1、平行于同一条直线的两条直线有什么关系?
2、空间中如果两个角的两边分别对应平行,那么这两个角有什么关系?
要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究
1.平行线的传递性
基本事实4:平行于同一条直线的两条直线互相平行.
符号表示:a∥b,b∥c⇒a∥c.
2.定理
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
四、典例分析、举一反三
题型一 基本事实4的应用
例1 如图,空间四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.
【答案】证明见解析.
【解析】证明:连接EH,因为EH是△ABD的中位线,
所以EH∥BD,且EH=.
同理,FG∥BD,且FG=.
所以EH∥FG,且EH=FG.
所以四边形EFGH为平行四边形.
解题技巧(证明两直线平行的常用方法)
(1)利用平面几何的结论,如平行四边形的对边,三角形的中位线与底边;
(2)定义法:即证明两条直线在同一个平面内且两直线没有公共点;
(3)利用基本事实4:找到一条直线,使所证的直线都与这条直线平行.
跟踪训练一
1、如图所示,在正方体ABCD-A′B′C′D′中,若M,N分别是A′D′,C′D′的中点,求证:四边形ACNM是梯形.
题型二 等角定理的应用
例2 如图所示,在正方体ABCD-A′B′C′D′中,已知E,E′分别是正方体ABCD-A′B′C′D′的棱AD,A′D′的中点,求证:∠BEC=∠B′E′C′.
【答案】证明见解析.
【解析】证明:如图所示,连接EE′.
因为E,E′分别是AD,A′D′的中点,
所以AE∥A′E′,且AE=A′E′.
所以四边形AEE′A′是平行四边形.
所以AA′∥EE′,且AA′=EE′.
又因为AA′∥BB′,且AA′=BB′,所以EE′∥BB′,且EE′=BB′.
所以四边形BEE′B′是平行四边形.
所以BE∥B′E′.
同理可证CE∥C′E′.
又∠BEC与∠B′E′C′的两边方向相同,
所以∠BEC=∠B′E′C′.
解题技巧 (应用等角定理的注意事项)
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.注意观察两角的方向是否相同,若相同,则两角相等;若不同,则两角互补.
跟踪训练二
五、课堂小结
让学生总结本节课所学主要知识及解题技巧
六、板书设计
七、作业
课本135页练习.
教学反思
本节课的重点是利用基本事实4和等角定理解决一些简单的线线平行问题和等角问题,比较简单,只需让学生做题的时候注意:应用等角定理是注意两角的方向.
课件:
练习:
图文来自网络,版权归原作者,如有不妥,告知即删