高中数学《1.1 直线拟合》微课精讲+知识点+教案课件+习题
科学 | 全部课程 ↓ |
知识点:
最小二乘法
如果有n个点:(x1,y1),(x2,y2),(x3,y3),……,(xn,yn),我们用下面的表达式来刻画这些点与直线y=a+bx的接近程度:
使得上式达到最小值的直线y=a+bx就是我们所要求解的直线,这种方法称为最小二乘法。
视频教学:
练习:
课件:
教案:
在物理实验中经常要观测两个有函数关系的物理量。根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题。这类问题通常有两种情况:一种是两个观测量x与y之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值;另一种是x与y之间的函数形式还不知道,需要找出它们之间的经验公式。后一种情况常假设x与y之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法。
一、最小二乘法原理
在两个观测量中,往往总有一个量精度比另一个高得多,为简单起见把精度较高的观测量看作没有误差,并把这个观测量选作x,而把所有的误差只认为是y的误差。设x和y的函数关系由理论公式
y=f(x;c1,c2,……cm) (0-0-1)
给出,其中c1,c2,……cm是m个要通过实验确定的参数。对于每组观测数据(xi,yi)i=1,2,……,N。都对应于xy平面上一个点。若不存在测量误差,则这些数据点都准确落在理论曲线上。只要选取m组测量值代入式(0-0-1),便得到方程组
yi=f(x;c1,c2,……cm) (0-0-2)
式中i=1,2,……,m.求m个方程的联立解即得m个参数的数值。显然N
在N>m的情况下,式(0-0-2)成为矛盾方程组,不能直接用解方程的方法求得m个参数值,只能用曲线拟合的方法来处理。设测量中不存在着系统误差,或者说已经修正,则y的观测值yi围绕着期望值 <f< span="">(x;c1,c2,……cm)> 摆动,其分布为正态分布,则yi的概率密度为</f<>
式中
取似然函数L最大来估计参数C,应使
取最小值:对于y的分布不限于正态分布来说,式(0-0-3)称为最小二乘法准则。若为正态分布的情况,则最大似然法与最小二乘法是一致的。因权重因子
根据式(0-0-3)的要求,应有
从而得到方程组
解方程组(0-0-4),即得m个参数的估计值
然而,对拟合的结果还应给予合理的评价。若yi服从正态分布,可引入拟合的x2量,
把参数估计
可以证明,
由x2分布得知,随机变量
二、直线的最小二乘拟合
曲线拟合中最基本和最常用的是直线拟合。设x和y之间的函数关系由直线方程
y=a0+a1x (0-0-7)
给出。式中有两个待定参数,a0代表截距,a1代表斜率。对于等精度测量所得到的N组数据(xi,yi),i=1,2……,N,xi值被认为是准确的,所有的误差只联系着yi。下面利用最小二乘法把观测数据拟合为直线。
1.直线参数的估计
前面指出,用最小二乘法估计参数时,要求观测值yi的偏差的加权平方和为最小。对于等精度观测值的直线拟合来说,由式(0-0-3)可使
最小即对参数a(代表a0,a1)最佳估计,要求观测值yi的偏差的平方和为最小。
根据式(0-0-8)的要求,应有
整理后得到正规方程组
解正规方程组便可求得直线参数a0和a1的最佳估计值
2.拟合结果的偏差
由于直线参数的估计值
首先讨论测量值yi的标准差S。考虑式(0-0-6),因等精度测量值yi所有的
已知测量值服从正态分布时,
由此可得yi的标准偏差
这个表示式不难理解,它与贝塞尔公式是一致的,只不过这里计算S时受到两参数
式(0-0-13)所表示的S值又称为拟合直线的标准偏差,它是检验拟合结果是否有效的重要标志。如果xy平面上作两条与拟合直线平行的直线
如图0-0-1所示,则全部观测数据点(xi,yi)的分布,约有68.3%的点落在这两条直线之间的范围内。
图0-0-1 拟合直线两侧数据点的分布
下面讨论拟合参数偏差,由式(0-0-10)和(0-0-11)可见,直线拟合的两个参数估计值
把式(0-0-10)与(0-0-11)分别代入上两式,便可计算得
三、相关系数及其显著性检验
当我们把观测数据点(xi,yi)作直线拟合时,还不大了解x与y之间线性关系的密切程度。为此要用相关系数ρ(x,y)来判断。其定义已由式(0-0-12)给出,现改写为另一种形式,并改用r表示相关系数,得
式中
图文来自网络,版权归原作者,如有不妥,告知即删