其中,第个Jackknife估计为,是由将第个观测删除计算得到的。它也可以表示为,其中,其由删除第行计算得到,则。由此我们得到Jackknife平均残差为其中,为矩阵,则Jackknife准则为其中为的矩阵,也被称为最小二乘交叉验证准则。因此权重的Jackknife选择是极小化的值,即对应的模型平均估计为Jackknife Model Average(JMA)估计。可以证明,JMA估计是渐近最优的,且这种最优性在随机误差项是异方差甚至序列相关时仍然成立[3],同时可以运用于分位数回归中[2]。
1.Hansen B E, Racine J S. Jackknife model averaging[J]. Journal of Econometrics, 2012, 167(1): 38-46.
2.Xun Lu and Liangjun Su. “Jackknife model averaging for quantile regressions”. In: Journal of Econometrics 188.1 (Sept. 2015), pp. 40–58. issn: 03044076.
3.Zhang X, Wan A T K, Zou G. Model averaging by jackknife criterion in models with dependent data[J]. Journal of Econometrics, 2013, 174(2): 82-94.
4.Liang H, Zou G, Wan A T K, et al. Optimal weight choice for frequentist model average estimators[J]. Journal of the American Statistical Association, 2011, 106(495): 1053-1066.
5.Bruce E. Hansen. “Least Squares Model Averaging”. In: Econometrica 75.4 (July 2007), pp. 1175–1189. issn: 0012-9682, 1468-0262
6.Bates J M, Granger C W J. The combination of forecasts[J]. Journal of the operational research society, 1969, 20(4): 451-468.
8.Qingfeng Liu and Ryo Okui. “Heteroscedasticity-robust Cp Model Averaging”. In: The Econometrics Journal 16.3 (Oct. 2013), pp. 463–472. issn: 1368-4221, 1368-423X.
9.Alan T.K. Wan, Xinyu Zhang, and Guohua Zou. “Least squares model averaging by Mallows criterion”. In: Journal of Econometrics 156.2 (June 2010), pp. 277–283. issn: 03044076.
10.Enrique Moral-Benito. “MODEL AVERAGING IN ECONOMICS: AN OVERVIEW: MODEL AVERAGING IN ECONOMICS”. In: Journal of Economic Surveys 29.1 (Feb. 2015), pp. 46–75. issn: 09500804.