其他
刚刚,史上最强最贵的空间望远镜发射升空!反复延期14年、耗资近百亿美元,詹姆斯·韦布望远镜为何令世界如此期待?
延期 14 年,超出预算近 20 倍,史上最强也最贵的空间望远镜今天终于发射。
早期宇宙。JWST正如一台时间机器,它将回顾135亿年前早期宇宙中形成的第一批恒星和星系。早期宇宙中天体发出的光经历了数百亿年的宇宙膨胀,发生了巨大的红移,到如今被我们观测到之时,早已转移到了光谱的近红外和中红外部分。因此,要看到宇宙诞生初期的景象、早期宇宙中的恒星和星系,我们需要一个强大的近红外和中红外望远镜——这正是JWST。
星系历史和演化。星系是如何形成的?是什么赋予了星系如今的形状结构?化学元素如何在其中分布?中心黑洞如何影响宿主星系?星系碰撞时发生了什么?从亚原子粒子到巨大尺度的暗物质结构,不同尺度的宇宙物质结构和星系历史都能为我们提供有关宇宙如何构建和演化的重要线索。JWST将帮助我们看到宇宙深处的古老星系,通过与今天的星系进行比较,我们或许能够了解它们的成长和演化。
恒星生命周期。尽管恒星模型已能较好地描绘恒星在整个生命周期中大部分时间的演化历程,但恒星的早期演化仍是未知,我们也尚不了解气体和尘埃云是如何坍缩形成行星的。想要了解这些过程,我们需要窥视恒星形成时尘土飞扬的原行星盘区域。致密的尘埃使其在可见光波段变得不透明,只有在红外波长下才能被穿透观察。
地外行星。JWST的另一项主要任务是研究系外行星的大气,寻找生命的基石。当行星掠过恒星时,恒星的光会被遮挡。通过JWST与地面望远镜的协同,径向速度分析将给出行星的质量,而JWST将进一步对行星的大气进行光谱分析。当恒星的光线穿过行星大气时,大气中的元素和分子将会吸收特征能量的谱线。而这样的吸收谱中的红外部分包含了最多的光谱特征。JWST的最终目标之一是找到一颗与地球大气相似的行星。