赛迪:AI+工业互联网正当时
“AI+工业互联网”提出意义
在云端,云原生概念的快速发展使容器和微服务成为工业互联网平台的主流技术。容器技术对 CPU、存储的额外开销非常小,且可以实现秒级开关。随着以 Docker 为主的容器技术和 Kubernetes 为主的容器编排工具的逐渐成熟,越来越多的工具通过容器封装、分发和运行。微服务通过模块化组合方式实现“松耦合”应用开发,将多个不同功能、相互隔离的微服务按需组合在一起并通过 API 集实现相互通信,从而构成一个功能完整的大型应用系统。
在边缘侧,MEC 作为5G 技术与业务融合的桥梁,是5G 大带宽、低时延、本地化垂直行业应用场景落地的关键。MEC 可以实现对业务数据的本地分流卸载、对业务的近端处理,在满足企业数据不出园区的安全隐私性需求的同时,也进一步降低了业务时延,提升了诸如远程控制、远程协作等业务的体验。通过 MEC 打造工业边缘云平台,能够更好地利用平台的 PaaS 能力为企业提供更多边缘应用,同时平台通用工业能力共享可以降低企业的信息化改造成本。
“AI+工业互联网”的内涵及特征解析
第一阶段,处于工业互联网发展探索阶段。重点通过从上到下的政策及相关平台建设,以及制造业企业的信息化水平评估,探索了中国工业互联网的发展路径,通过工业互联网的发展明确制造业企业实现智能化的前期积累,摸清制造业企业的信息化水平及家底。该阶段重点企业主要的几项工作是企业开发完善工业互联网专业和综合平台,通过工业互联网对制造业企业开展信息化评估、明确工业互联网的发展模式,打通企业内外网络等相关工作。
第二阶段,伴随着5G、人工智能、大数据技术的不断成熟和落地,进入了通过技术实现智能化的发展阶段。在这些技术的支撑下,实现从生产设计到产品终端的全产业链覆盖,“AI+工业互联网”被提出。这个时期,工业互联网在企业中更多实现的是智能工业质检、智能安全巡检、工艺参数优化、设备资产管理、设备与质量异常预警、市场预测与供应链优化等功能。
打通基础网络,为实现全产业链智能化做好通道。工业互联网网络体系包括网络互联、数据互通和标识解析三部分。目前我国正在加快建设标识解析工作,标识解析体系贯穿工业生产和销售的全流程,通过标识解析,各工业企业将能够实现产品与设备的全生命周期管理:标识解析体系的建设可以使得不同企业之间异构的标识之间得以互通,数据沟通也变得通畅,进而可以消除供需两方之间的信息不对称,降低工业领域乃至全社会的交易成本。
工业互联网平台的建设及专项和双跨平台的累积,为智能化提供前提条件。工业互联网平台体系包相当于工业互联网的“操作系统”,具有数据汇聚、建模分析、知识复用、应用创新等作用。只有平台内的数据达到一定程度,模型和算法更加合适才可能真正实现智能化。
工业互联网数据体系专业化、规模化,使得智能化成为可能。数据是实现数字化、网络化、智能化的基础,制造业本身由于行业复杂,数据千差万别,需要长期积累和专业化才能积累一批有效数据,经过多年工业互联网的前期工作,目前我国已经在该工作上取得一定成效。
工业互联网安全不断完善,为智能化提供安全保证。工业互联网打破了原来的内网安全体系,加大了制造业的网络信息安全风险,因此需要相应的工业互联网安全的产品及解决方案的诞生以及服务的提供,同时也对安全产品的预警功能要求更好,因此态势感知产品的诞生满足了这个要求。同时中国制造业企业,特别是在制造业中小企业对安全产品的认知正在加快提升的道路上,由于企业在网络信息安全产品的预算有限,平台型的服务产品成为制造业企业防范安全的主流产品后有利于推动工业互联网的发展。
特征一:机器学习及深度学习成为核心。以大量数据采集为算料基础,既包括物联网终端设备采集到的生产数据,也包括企业运行中的经营管理数据;以机器学习或深度学习算法为核心,通过建立人工智能模型解决特定的诊断、预测等问题。
特征二:用户需求导向性更强,实现全产业链覆盖。随着人工智能技术在工业各领域、环节、产品中的深度融合,AI+工业互联网的应用场景开始从企业内部的单点式应用走向产业链各环节之间的数据价值发现。与传统的智能化中台更加关注生产系统的控制相比,未来 AI+工业互联网平台将围绕更大尺度范围内的产业链数据,为企业提供供应链优化、物流调度优化、市场销售预测等方面的决策辅助支撑。同时实现纵向集成与横向集成的工业智能将增强工业生产中人与人、人与物、物与物的联系,加快形成知识沉淀,更好地发挥智能化的支撑作用。
“AI+工业互联网”时代的发展建议