其他
万字强文:深度剖析益生菌与肥胖(下)
这是《肠道产业》第 161 篇文章
编者按:
我们昨天的文章分享了发表在 Microorganism 杂志上关于益生菌与肥胖综述的上半部分,主要以微生物组为核心,阐述了肥胖代谢机制的研究:万字强文:深度剖析益生菌与肥胖(上)
今天,我们继续分享该综述的下半部分:主要阐述了不同饮食模式对肥胖人群的影响,以及益生菌治疗肥胖的未来方向等。
以下为下半部分的编译内容:
其它因素引起的肥胖
肥胖与免疫系统的关系及母婴传递
基于饮食的肠道菌群控制
实验结果显示,在素食者的肠道微生物中,肠杆菌属,拟杆菌属,双歧杆菌属这些微生物所占的比例要比杂食者的占比少。科水平上肠杆菌科,属水平上克雷伯氏菌属、肠杆菌属、柠檬酸杆菌属和梭菌属,这些菌在二者之间并没有差别。
未来治疗肥胖的方向
结论
1. World Health Organization. Overweightand Obesity. Available online:http://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight(accessed on 25 September 2018).2. Van Baal, P.H.; Hoogenveen, R.T.; deWit, A.G.; Boshuizen, H.C. Estimating health-adjusted life expectancyconditional on risk factors: Results for smoking and obesity. Popul. HealthMetrics 2006, 4, 14. 3. Nascimento Ferreira, M.V.;Rendo-Urteaga, T.; De Moraes, A.C.; Moreno, L.A.; Carvalho, H.B. AbdominalObesity in Children: The Role of Physical Activity, Sedentary Behavior, andSleep Time. In Nutrition in the Prevention and Treatment of Abdominal Obesity;Academic Press: Cambridge, MA, USA, 2019; pp. 81–94. [Google Scholar]4. FAO; WHO. Guidelines for the Evaluationof Probiotics in Foods. Report of a Joint FAO/WHO Working Group on DraftingGuidelines for the Evaluation of Probiotics in Food; FAO: Rome, Italy; WHO:Geneva, Switzerland, 2002. [Google Scholar]5. Rajilić-Stojanović, M.; De Vos, W.M. Thefirst 1000 cultured species of the human gastrointestinal microbiota. FEMSMicrobiol. Rev. 2014, 38, 996–1047. 6. Blandino, G.; Inturri, R.; Lazzara, F.;Di Rosa, M.; Malaguarnera, L. Impact of gut microbiota on diabetes mellitus.Diabetes Metab. 2016, 42, 303–315. 7. Gill, H.; Prasad, J. Probiotics,immunomodulation, and health benefits. Adv. Exp. Med. Biol. 2008, 206, 423–454.[Google Scholar]8. Ashraf, R.; Shah, N.P. Immune SystemStimulation by Probiotic Microorganisms. Crit. Rev. Food Sci. Nutr. 2014, 54,938–956.9. Kang, J.-H.; Yun, S.-I.; Park, M.-H.;Park, J.-H.; Jeong, S.-Y.; Park, H.-O. Anti-Obesity Effect of Lactobacillusgasseri BNR17 in High-Sucrose Diet-Induced Obese Mice. PLoS ONE 2013, 8,e54617.10. Park, Y.H.; Kim, J.G.; Shin, Y.W.; Kim,H.S.; Kim, Y.-J.; Chun, T.; Kim, S.H.; Whang, K.Y. Effects of Lactobacillusacidophilus 43121 and a mixture of Lactobacillus casei and Bifidobacteriumlongum on the serum cholesterol level and fecal sterol excretion inhypercholesterolemia-induced pigs. Biosci. Biotechnol. Biochem. 2008, 72,595–600.11. Sharma, P.; Bhardwaj, P.; Singh, R.Administration of Lactobacillus casei and Bifidobacterium bifidum AmelioratedHyperglycemia, Dyslipidemia, and Oxidative Stress in Diabetic Rats. Int. J.Prev. Med. 2016, 7, 102. [Google Scholar]12. So, J.-S.; Kwon, H.-K.; Lee, C.-G.; Yi,H.-J.; Park, J.-A.; Lim, S.-Y.; Hwang, K.-C.; Jeon, Y.H.; Im, S.-H.Lactobacillus casei suppresses experimental arthritis by down-regulating Thelper 1 effector functions. Mol. Immunol. 2008, 45, 2690–2699.13. Larsen, N.; Vogensen, F.K.; Berg,F.W.J.V.D.; Nielsen, D.S.; Andreasen, A.S.; Pedersen, B.K.; Abu Al-Soud, W.;Sørensen, S.J.; Hansen, L.H.; Jakobsen, M. Gut Microbiota in Human Adults withType 2 Diabetes Differs from Non-Diabetic Adults. PLoS ONE 2010, 5, e9085.14. Kong, Y.; He, M.; McAlister, T.;Seviour, R.; Forster, R. Quantitative Fluorescence In Situ Hybridization ofMicrobial Communities in the Rumens of Cattle Fed Different Diets. Appl.Environ. Microbiol. 2010, 76, 6933–6938. 15. Barrett, E.; Ross, R.; O’Toole, P.;Fitzgerald, G.; Stanton, C. γ-Aminobutyric acid production by culturablebacteria from the human intestine. J. Appl. Microbiol. 2012, 113, 411–417. 16. Khalili, L.; Alipour, B.; Jafar-Abadi,M.A.; Faraji, I.; Hassanalilou, T.; Abbasi, M.M.; Vaghef-Mehrabany, E.; Sani,M.A. The Effects of Lactobacillus casei on Glycemic Response, Serum Sirtuin1and Fetuin-A Levels in Patients with Type 2 Diabetes Mellitus: A RandomizedControlled Trial. Iran. Biomed. J. 2019, 23, 68–77. 17. Sabico, S.; Al-Mashharawi, A.;Al-Daghri, N.M.; Wani, K.; Amer, O.E.; Hussain, D.S.; Ansari, M.G.; Masoud,M.S.; Alokail, M.S.; McTernan, P.G. Effects of a 6-month multi-strain probioticssupplementation in endotoxemic, inflammatory and cardiometabolic status of T2DMpatients: A randomized, double-blind, placebo-controlled trial. Clin. Nutr.2018, 38, 1563–1569.18. Hu, C.; Wong, F.S.; Wen, L. Type 1diabetes and gut microbiota: Friend or foe? Pharmacol. Res. 2015, 98, 9–15.19. Ljungberg, M.; Korpela, R.; Ilonen, J.;Ludvigsson, J.; Vaarala, O. Probiotics for the Prevention of Beta CellAutoimmunity in Children at Genetic Risk of Type 1 Diabetes—The PRODIA Study.Ann. N. Y. Acad. Sci. 2006, 1079, 360–364.20. Hartstra, A.V.; Bouter, K.E.; Bäckhed,F.; Nieuwdorp, M. Insights into the role of the microbiome in obesity and type2 diabetes. Diabetes Care 2015, 38, 159–165.21. Grover, S.; Rashmi, H.M.; Srivastava,A.K.; Batish, V.K. Probiotics for human health—New innovations and emergingtrends. Gut Pathog. 2012, 4, 15.22. Szulinska, M.; Łoniewski, I.; VanHemert, S.; Sobieska, M.; Bogdański, P. Dose-Dependent Effects of MultispeciesProbiotic Supplementation on the Lipopolysaccharide (LPS) Level andCardiometabolic Profile in Obese Postmenopausal Women: A 12-Week RandomizedClinical Trial. Nutrients 2018, 10, 773.23. Chan, P.A.; Robinette, A.; Montgomery,M.; Almonte, A.; Cu-Uvin, S.; Lonks, J.R.; Chapin, K.C.; Kojic, E.M.; Hardy,E.J. Extragenital Infections Caused by Chlamydia trachomatis and Neisseriagonorrhoeae: A Review of the Literature. Infect. Dis. Obstet. Gynecol. 2016,2016, 1–17.24. Le Barz, M.; Anhê, F.F.; Varin, T.V.;Desjardins, Y.; Levy, E.; Roy, D.; Urdaci, M.C.; Marette, A. Probiotics asComplementary Treatment for Metabolic Disorders. Diabetes Metab. J. 2015, 39,291–303. 25. International Diabetes Federation. IDFDiabetes Atlas; IDF: Watermael-Boitsfort, Belgium, 2017. Available online:http://www.diabetesatlas.org/resources/2017-atlas.html (accessed on 12 July2019).26. Kobyliak, N.; Conte, C.; Cammarota, G.;Haley, A.P.; Štyriak, I.; Gaspar, L.; Fusek, J.; Rodrigo, L.; Kruzliak, P.Probiotics in prevention and treatment of obesity: A critical view. Nutr. Metab.2016, 13, 14. 27. Barrett, H.L.; Callaway, L.K.; Nitert,M.D. Probiotics: A potential role in the prevention of gestational diabetes?Acta Diabetol. 2012, 49, 1–13. 28. Mishra, A.K.; Dubey, V.; Ghosh, A.R.;Information, P.E.K.F.C. Obesity: An overview of possible role(s) of guthormones, lipid sensing and gut microbiota. Metablism 2016, 65, 48–65. 29. Zhao, X.; Higashikawa, F.; Noda, M.;Kawamura, Y.; Matoba, Y.; Kumagai, T.; Sugiyama, M. The Obesity and Fatty LiverAre Reduced by Plant-Derived Pediococcus pentosaceus LP28 in High FatDiet-Induced Obese Mice. PLoS ONE 2012, 7, e30696.30. Park, S.-Y.; Cho, S.-A.; Lee, M.-K.;Lim, S.-D. Effect of Lactobacillus plantarum FH185 on the Reduction ofAdipocyte Size and Gut Microbial Changes in Mice with Diet-induced Obesity.Food Sci. Anim. Resour. 2015, 35, 171–178.31. Park, S.; Ji, Y.; Jung, H.Y.; Park, H.;Kang, J.; Choi, S.H.; Shin, H.; Hyun, C.K.; Kim, K.T.; Holzapfel, W.H.Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissueaccumulation in a diet-induced obesity murine model. Appl. Microbiol.Biotechnol. 2017, 101, 1605–1614.32. Wu, C.-C.; Weng, W.-L.; Lai, W.-L.;Tsai, H.-P.; Liu, W.-H.; Lee, M.-H.; Tsai, Y.-C. Effect of Lactobacillusplantarum Strain K21 on High-Fat Diet-Fed Obese Mice. Evid. Based Complement.Altern. Med. 2015, 2015, 1–9. [Google Scholar]33. Park, J.E.; Oh, S.H.; Cha, Y.S.Lactobacillus plantarum LG42 isolated from gajami sik-hae decreases body andfat pad weights in diet-induced obese mice. J. Appl. Microbiol. 2014, 116,145–156.34. Callaway, L.K.; McIntyre, H.D.;Barrett, H.L.; Foxcroft, K.; Tremellen, A.; Lingwood, B.E.; Tobin, J.M.;Wilkinson, S.; Kothari, A.; Morrison, M.; et al. Probiotics for the Preventionof Gestational Diabetes Mellitus in Overweight and Obese Women: Findings Fromthe SPRING Double-blind Randomized Controlled Trial. Diabetes Care 2019, 42,dc182248.35. Okesene-Gafa, K.A.M.; Li, M.; McKinlay,C.J.D.; Taylor, R.S.; Rush, E.C.; Wall, C.R.; Wilson, J.; Murphy, R.; Taylor,R.; Thompson, J.M.D.; et al. Effect of antenatal dietary interventions inmaternal obesity on pregnancy weight-gain and birthweight: Healthy Mums andBabies (HUMBA) randomized trial. Am. J. Obstet. Gynecol. 2019, 221, 1–13. 36. Krumbeck, J.A.; Rasmussen, H.E.;Hutkins, R.W.; Clarke, J.; Shawron, K.; Keshavarzian, A.; Walter, J. ProbioticBifidobacterium strains and galacto oligosaccharides improve intestinal barrierfunction in obese adults but show no synergism when used together assynbiotics. Microbiome 2018, 6, 121. 37. Kim, J.; Yun, J.M.; Kim, M.K.; Kwon,O.; Cho, B. Lactobacillus gasseri BNR17 Supplementation Reduces the VisceralFat Accumulation and Waist Circumference in Obese Adults: A Randomized,Double-Blind, Placebo-Controlled Trial. J. Med. Food 2018, 21, 454–461. 38. Minami, J.; Iwabuchi, N.; Tanaka, M.;Yamauchi, K.; Xiao, J.-Z.; Abe, F.; Sakane, N. Effects of Bifidobacterium breveB-3 on body fat reductions in pre-obese adults: A randomized, double-blind,placebo-controlled trial. Biosci. Microbiota Food Health 2018, 37, 67–75. 39. Ogawa, A.; Kadooka, Y.; Kato, K.;Shirouchi, B.; Sato, M. Lactobacillus gasseri SBT2055 reduces postprandial andfasting serum non-esterified fatty acid levels in Japanesehypertriacylglycerolemic subjects. Lipids Health Dis. 2014, 13, 36. 40. Dietrich, C.G.; Kottmann, T.; Alavi, M.Commercially available probiotic drinks containing Lactobacillus caseiDN-114001 reduce antibiotic-associated diarrhea. World J. Gastroenterol. 2014,20, 15837–15844. 41. Iqbal, M.Z.; Qadir, M.I.; Hussain, T.;Janbaz, K.H.; Khan, Y.H.; Ahmad, B. Review: Probiotics and their beneficialeffects against various diseases. Pak. J. Pharm. Sci. 2014, 27, 405–415.[Google Scholar]42. Slavin, J. Fiber and Prebiotics:Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435.43. Bejar, W.; Hamden, K.; Ben Salah, R.;Chouayekh, H. Lactobacillus plantarum TN627 significantly reduces complicationsof alloxan-induced diabetes in rats. Anaerobe 2013, 24, 4–11.44. Sakai, T.; Taki, T.; Nakamoto, A.;Shuto, E.; Tsutsumi, R.; Toshimitsu, T.; Makino, S.; Ikegami, S. Lactobacillusplantarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fatdiet. J. Nutr. Sci. Vitaminol. 2013, 59, 144–147.45. Yakovlieva, M.; Tacheva, T.; Mihaylova,S.; Tropcheva, R.; Trifonova, K.; Tolesmall ka, C.A.; Danova, S.; Vlaykova, T.Influence of Lactobacillus brevis 15 and Lactobacillus plantarum 13 on bloodglucose and body weight in rats after high-fructose diet. Benef. Microbes 2015,6, 505–512. 46. Huang, H.-Y.; Korivi, M.; Tsai, C.-H.;Yang, J.-H.; Tsai, Y.-C. Supplementation of Lactobacillus plantarum K68 andFruit-Vegetable Ferment along with High Fat-Fructose Diet Attenuates MetabolicSyndrome in Rats with Insulin Resistance. Evid. Based Complement. Altern. Med.2013, 2013, 1–12. [Google Scholar]47. Li, X.; Yin, B.; Fang, D.; Jiang, T.;Zhao, J.; Wang, N.; Fang, S.; Zhang, H.; Wang, G.; Chen, W. Effects ofLactobacillus plantarum CCFM0236 on hyperglycaemia and insulin resistance inhigh-fat and streptozotocin-induced type 2 diabetic mice. J. Appl. Microbiol.2016, 121, 1727–1736. 48. Zuo, T.; Ng, S.C. The Gut Microbiota inthe Pathogenesis and Therapeutics of Inflammatory Bowel Disease. Front.Microbiol. 2018, 9, 2247. 49. Opazo, M.C.; Ortega-Rocha, E.M.;Coronado-Arrázola, I.; Bonifaz, L.C.; Boudin, H.; Neunlist, M.; Bueno, S.M.;Kalergis, A.M.; Riedel, C.A. Intestinal microbiota influences non-intestinalrelated autoimmune diseases. Front. Microbiol. 2018, 9, 432. 50. Jumpertz, R.; Le, D.S.; Turnbaugh,P.J.; Trinidad, C.; Bogardus, C.; Gordon, J.I.; Krakoff, J. Energy-balancestudies reveal associations between gut microbes, caloric load, and nutrientabsorption in humans. Am. J. Clin. Nutr. 2011, 94, 58–65. 51. Ignacio, A.; Fernandes, M.; Rodrigues,V.; Groppo, F.; Cardoso, A.; Avila-Campos, M.; Nakano, V.; Avila-Campos, M.Correlation between body mass index and faecal microbiota from children. Clin.Microbiol. Infect. 2016, 22, 1–8.52. Patil, D.P.; Dhotre, D.P.; Chavan,S.G.; Sultan, A.; Jain, D.S.; Lanjekar, V.B.; Gangawani, J.; Shah, P.S.;Todkar, J.S.; Shah, S.; et al. Molecular analysis of gut microbiota in obesityamong Indian individuals. J. Biosci. 2012, 37, 647–657.53. Zhang, H.; DiBaise, J.K.; Zuccolo, A.;Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.;Rittmann, B.E.; et al. Human gut microbiota in obesity and after gastricbypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370.54. Santacruz, A.; Collado, M.C.;García-Valdés, L.; Segura, M.T.; Martín-Lagos, J.A.; Anjos, T.; Martí-Romero,M.; Lopez, R.M.; Florido, J.; Campoy, C.; et al. Gut microbiota composition isassociated with body weight, weight gain and biochemical parameters in pregnantwomen. Br. J. Nutr. 2010, 104, 83–92.55. Allen, J.M.; Jaggers, R.M.; Solden,L.M.; Loman, B.R.; Davies, R.H.; Mackos, A.R.; Ladaika, C.A.; Berg, B.M.;Chichlowski, M.; Bailey, M.T. Dietary oligosaccharides attenuate stress-induceddisruptions in immune reactivity and microbial B-vitamin metabolism. FrontImmunol. 2019, 10, 1774.56. Fei, N.; Zhao, L. An opportunisticpathogen isolated from the gut of an obese human causes obesity in germfreemice. ISME J. 2013, 7, 880–884. 57. Bervoets, L.; Van Hoorenbeeck, K.;Kortleven, I.; Van Noten, C.; Hens, N.; Vael, C.; Goossens, H.; Desager, K.N.;Vankerckhoven, V. Differences in gut microbiota composition between obese andlean children: A cross-sectional study. Gut Pathog. 2013, 5, 10. 58. Duncan, S.H.; Belenguer, A.; Holtrop,G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced dietary intake ofcarbohydrates by obese subjects results in decreased concentrations of butyrateand butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 2007, 73,1073–1078. 59. Costa, F.R.; Françozo, M.C.; DeOliveira, G.G.; Ignacio, A.; Castoldi, A.; Zamboni, D.S.; Ramos, S.G.; Câmara,N.O.; De Zoete, M.R.; Palm, N.W.; et al. Gut microbiota translocation to thepancreatic lymph nodes triggers NOD2 activation and contributes to T1D onset.J. Exp. Med. 2016, 213, 1223–1239.60. Murugesan, S.; Ulloa-Martínez, M.;Martinez-Rojano, H.; Galván-Rodríguez, F.M.; Miranda-Brito, C.; Romano, M.C.;Piña-Escobedo, A.; Pizano-Zárate, M.L.; Hoyo-Vadillo, C.; García-Mena, J. Studyof the diversity and short-chain fatty acids production by the bacterialcommunity in overweight and obese Mexican children. Eur. J. Clin. Microbiol.Infect. Dis. 2015, 34, 1337–1346.61. Verdam, F.J.; Fuentes, S.; De Jonge,C.; Zoetendal, E.G.; Erbil, R.; Greve, J.W.; Buurman, W.A.; De Vos, W.M.;Rensen, S.S. Human intestinal microbiota composition is associated with localand systemic inflammation in obesity. Obesity 2013, 21, E607–E615.62. Kasai, C.; Sugimoto, K.; Moritani, I.;Tanaka, J.; Oya, Y.; Inoue, H.; Tameda, M.; Shiraki, K.; Ito, M.; Takei, Y.; etal. Comparison of the gut microbiota composition between obese and non-obeseindividuals in a Japanese population, as analyzed by terminal restrictionfragment length polymorphism and next-generation sequencing. BMC Gastroenterol.2015, 15, 100.63. Payahoo, L.; Khajebishak, Y.;Ostadrahimi, A. Akkermansia muciniphila bacteria: A new perspective on themanagement of obesity: An updated review. Rev. Med. Microbiol. 2019, 30, 83–89.64. Million, M.; Angelakis, E.; Paul, M.;Armougom, F.; Leibovici, L.; Raoult, D. Comparative meta-analysis of the effectof Lactobacillus species on weight gain in humans and animals. Microb. Pathog.2012, 53, 100–108.65. Qiao, Y.; Sun, J.; Xia, S.; Li, L.; Li,Y.; Wang, P.; Shi, Y.; Le, G. Effects of different Lactobacillus reuteri oninflammatory and fat storage in high-fat diet-induced obesity mice model. J.Funct. Foods 2015, 14, 424–434.66. Ridlon, J.M.; Kang, D.J. Hylemon PB.Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 2006,47, 241–259. 67. Binder, H.J.; Filburn, B.; Floch, M.Bile acid inhibition of intestinal anaerobic organisms. Am. J. Clin. Nutr.1975, 28, 119–125. 68. Kurdi, P.; Kawanishi, K.; Mizutani, K.;Yokota, A. Mechanism of Growth Inhibition by Free Bile Acids in Lactobacilliand Bifidobacteria. J. Bacteriol. 2006, 188, 1979–1986.69. Fiorucci, S.; Mencarelli, A.;Palladino, G.; Cipriani, S. Bile-acid-activated receptors: Targeting TGR5 andfarnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol. Sci.2009, 30, 570–580.70. Thomas, C.; Gioiello, A.; Noriega, L.;Strehle, A.; Oury, J.; Rizzo, G.; Macchiarulo, A.; Yamamoto, H.; Mataki, C.;Pruzanski, M.; et al. TGR5-mediated bile acid sensing controls glucosehomeostasis. Cell Metab. 2009, 10, 167–177.71. McGavigan, A.K.; Garibay, D.; Henseler,Z.M.; Chen, J.; Bettaieb, A.; Haj, F.G.; Ley, R.E.; Chouinard, M.L.; Cummings,B.P. TGR5 contributes to glucoregulatory improvements after vertical sleevegastrectomy in mice. Gut 2017, 66, 226–234.72. Parséus, A.; Sommer, N.; Sommer, F.;Caesar, R.; Molinaro, A.; Ståhlman, M.; Greiner, T.U.; Perkins, R.; Bäckhed, F.Microbiota-induced obesity requires farnesoid X receptor. Gut 2017, 66,429–437.73. Flint, H.J.; Bayer, E.A.; Rincon, M.T.;Lamed, R.; White, B.A. Polysaccharide utilization by gut bacteria: Potentialfor new insights from genomic analysis. Nat. Rev. Genet. 2008, 6, 121–131.74. Riley, L.W.; Raphael, E.; Faerstein, E.Obesity in the United States—Dysbiosis from Exposure to Low-Dose Antibiotics?Front. Public Health 2013, 1, 69.75. Canfora, E.E.; Meex, R.C.; Venema, K.;Blaak, E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev.Endocrinol. 2019, 1. 76. Brinkworth, G.D.; Noakes, M.; Clifton,P.M.; Bird, A.R. Comparative effects of very low-carbohydrate, high-fat andhigh-carbohydrate, low-fat weight-loss diets on bowel habit and faecalshort-chain fatty acids and bacterial populations. Br. J. Nutr. 2009, 101,1493. 77. Brown, A.J.; Goldsworthy, S.M.; Barnes,A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.;Kinghorn, I.; Fraser, N.J.; et al. The Orphan G protein-coupled receptors GPR41and GPR43 are activated by propionate and other short chain carboxylic acids.J. Biol. Chem. 2003, 278, 11312–11319. 78. Xu, H.; Barnes, G.T.; Yang, Q.; Tan,G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.;et al. Chronic inflammation in fat plays a crucial role in the development ofobesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830.79. Cani, P.D.; Amar, J.; Iglesias, M.A.;Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.;Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and InsulinResistance. Diabetes 2007, 56, 1761–1772.80. Dalby, M.J.; Aviello, G.; Ross, A.W.;Walker, A.W.; Barrett, P.; Morgan, P.J. Diet induced obesity is independent ofmetabolic endotoxemia and TLR4 signalling, but markedly increases hypothalamicexpression of the acute phase protein, SerpinA3N. Sci. Rep. 2018, 8, 15648.81. Amar, J.; Burcelin, R.; Ruidavets,J.B.; Cani, P.D.; Fauvel, J.; Alessi, M.C.; Chamontin, B.; Ferriéres, J. Energyintake is associated with endotoxemia in apparently healthy men. Am. J. Clin.Nutr. 2008, 87, 1219–1223.82. Hotamisligil, G.S. Inflammation andmetabolic disorders. Nature 2006, 444, 860–867.83. Chawla, A. Nuclear Receptors and LipidPhysiology: Opening the X-Files. Science 2001, 294, 1866–1870.84. Glass, C.K.; Ogawa, S. Combinatorial rolesof nuclear receptors in inflammation and immunity. Nat. Rev. Immunol. 2006, 6,44–55.85. Wellen, K.E.; Hotamisligil, G.S.Inflammation, stress, and diabetes. J. Clin. Investig. 2005, 115,1111–1119. 86. Ge, H.; Li, X.; Weiszmann, J.; Wang,P.; Baribault, H.; Chen, J.-L.; Tian, H.; Li, Y. Activation of GProtein-Coupled Receptor 43 in Adipocytes Leads to Inhibition of Lipolysis andSuppression of Plasma Free Fatty Acids. Endocrinology 2008, 149,4519–4526. 87. Semenkovich, C.F. Insulin resistanceand atherosclerosis. J. Clin. Investig. 2006, 116, 1813–1822. 88. Bäckhed, F.; Ding, H.; Wang, T.;Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gutmicrobiota as an environmental factor that regulates fat storage. Proc. Natl.Acad. Sci. USA 2004, 101, 15718–15723. 89. Shapiro, H.; Suez, J.; Elinav, E.Personalized microbiome-based approaches to metabolic syndrome management andprevention. J. Diabetes 2017, 9, 226–236. 90. Wang, Z.; Klipfell, E.; Bennett, B.J.;Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.;Chung, Y.-M.; et al. Gut flora metabolism of phosphatidylcholine promotescardiovascular disease. Nature 2011, 472, 57–63. 91. Koeth, R.A.; Wang, Z.; Levison, B.S.;Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al.Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat,promotes atherosclerosis. Nat. Med. 2013, 19, 576–585.92. Chiang, J.Y.L. Bile acids: Regulationof synthesis. J. Lipid Res. 2009, 50, 1955–1966.93. Vrieze, A.; Out, C.; Fuentes, S.;Jonker, L.; Reuling, I.; Kootte, R.S.; Van Nood, E.; Holleman, F.; Knaapen, M.;Romijn, J.A.; et al. Impact of oral vancomycin on gut microbiota, bile acidmetabolism, and insulin sensitivity. J. Hepatol. 2014, 60, 824–831.94. Reijnders, D.; Goossens, G.H.; Hermes,G.D.; Neis, E.P.; Van Der Beek, C.M.; Most, J.; Holst, J.J.; Lenaerts, K.;Kootte, R.S.; Nieuwdorp, M.; et al. Effects of Gut Microbiota Manipulation byAntibiotics on Host Metabolism in Obese Humans: A Randomized Double-BlindPlacebo-Controlled Trial. Cell Metab. 2016, 24, 341.95. Delgado, T.C. Glutamate and GABA inAppetite Regulation. Front. Endocrinol. 2013, 4, 103. 96. Duca, F.A.; Swartz, T.D.; Sakar, Y.;Covasa, M. Increased Oral Detection, but Decreased Intestinal Signaling forFats in Mice Lacking Gut Microbiota. PLoS ONE 2012, 7, e39748. 97. Ley, R.E.; Bäckhed, F.; Turnbaugh, P.;Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbialecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. 98. Turnbaugh, P.J.; Gordon, J.I. The coregut microbiome, energy balance and obesity. J. Physiol. 2009, 587, 4153–4158.99. Ussar, S.; Griffin, N.W.; Bézy, O.;Fujisaka, S.; Vienberg, S.; Softic, S.; Deng, L.; Bry, L.; Gordon, J.I.; Kahn,C.R. Interactions between Gut Microbiota, Host Genetics and Diet Modulate thePredisposition to Obesity and Metabolic Syndrome. Cell Metab. 2015, 22,516–530.100. Goodrich, J.K.; Waters, J.L.; Poole,A.C.; Sutter, J.L.; Koren, O.; Blekhman, R.; Beaumont, M.; Van Treuren, W.;Knight, R.; Bell, J.T.; et al. Human Genetics Shape the Gut Microbiome. Cell2014, 159, 789–799.101. Liu, R.; Hong, J.; Xu, X.; Feng, Q.;Zhang, D.; Gu, Y.; Shi, J.; Zhao, S.; Liu, W.; Wang, X.; et al. Gut microbiomeand serum metabolome alterations in obesity and after weight-loss intervention.Nat. Med. 2017, 23, 859–868.102. Bodenlos, J.S.; Schneider, K.L.;Oleski, J.; Gordon, K.; Rothschild, A.J.; Pagoto, S.L. Vagus nerve stimulationand food intake: Effect of body mass index. J. Diabetes Sci. Technol. 2014, 8,590–595.103. Meng, F.; Han, Y.; Srisai, D.;Belakhov, V.; Farias, M.; Xu, Y.; Palmiter, R.D.; Baasov, T.; Wu, Q. Newinducible genetic method reveals critical roles of GABA in the control offeeding and metabolism. Proc. Natl. Acad. Sci. USA 2016, 113, 3645–3650.104. Schellekens, H.; Dinan, T.G.; Cryan,J.F. Lean mean fat reducing “ghrelin” machine: Hypothalamic ghrelin and ghrelinreceptors as therapeutic targets in obesity. Neuropharmacology 2010, 58, 2–16.105. Heisler, L.K.; Jobst, E.E.; Sutton,G.M.; Zhou, L.; Borok, E.; Thornton-Jones, Z.; Liu, H.Y.; Zigman, J.M.;Balthasar, N.; Kishi, T.; et al. Serotonin Reciprocally Regulates MelanocortinNeurons to Modulate Food Intake. Neuron 2006, 51, 239–249. 106. Xu, Y.; Jones, J.E.; Kohno, D.;Williams, K.W.; Lee, C.E.; Choi, M.J.; Anderson, J.G.; Heisler, L.K.; Zigman,J.M.; Lowell, B.B.; et al. 5-HT2CRs expressed by pro-opiomelanocortin neuronsregulate energy homeostasis. Neuron 2008, 60, 582–589. 107. Sandhu, K.V.; Sherwin, E.;Schellekens, H.; Stanton, C.; Dinan, T.G.; Cryan, J.F. Feeding themicrobiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Transl. Res.2016, 179, 223–244. 108. Everard, A.; Cani, P.D. Gut microbiotaand GLP-1. Rev. Endocr. Metab. Disord. 2014, 15, 189–196. 109. Niwa, T.; Takeda, N.; Tatematsu, A.;Maeda, K. Accumulation of indoxyl sulfate, an inhibitor of drug-binding, inuremic serum as demonstrated by internal-surface reversed-phase liquidchromatography. Clin. Chem. 1988, 34, 2264–2267.110. Frost, G.; Sleeth, M.L.; Sahuri-Arisoylu,M.; Lizarbe, B.; Cerdan, S.; Brody, L.; Anastasovska, J.; Ghourab, S.; Hankir,M.; Zhang, S.; et al. The short-chain fatty acid acetate reduces appetite via acentral homeostatic mechanism. Nat. Commun. 2014, 5, 3611. 111. Perry, R.J.; Peng, L.; Barry, N.A.Acetate mediates a microbiome-brain-beta-cell axis to promote metabolicsyndrome. Nature 2016, 534, 213–217.112. Swartz, T.D.; Duca, F.A.; de Wouters,T.; Sakar, Y.; Covasa, M. Up-regulation of intestinal type 1 taste receptor 3and sodium glucose luminal transporter-1 expression and increased sucroseintake in mice lacking gut microbiota. Br. J. Nutr. 2012, 107, 621–630.113. Oh, M.S.; Phelps, K.R.; Traube, M.;Barbosa-Saldivar, J.L.; Boxhill, C.; Carroll, H.J. D-Lactic Acidosis in a Manwith the Short-Bowel Syndrome. N. Engl. J. Med. 1979, 301, 249–252. 114. Tang, W.W.; Wang, Z.; Levison, B.S.;Koeth, R.A.; Britt, E.B.; Fu, X.; Wu, Y.; Hazen, S.L. Intestinal microbialmetabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med.2013, 368, 1575–1584. 115. Ichii, O.; Otsuka-Kanazawa, S.;Nakamura, T.; Ueno, M.; Kon, Y.; Chen, W.; Rosenberg, A.Z.; Kopp, J.B. PodocyteInjury Caused by Indoxyl Sulfate, a Uremic Toxin and Aryl-Hydrocarbon ReceptorLigand. PLoS ONE 2014, 9, e108448. 116. Vaziri, N.D.; Wong, J.; Pahl, M.;Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.-H.; Andersen, G.L.Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83,308–315. 117. Zhao, Y.-Y.; Wang, H.-L.; Cheng,X.-L.; Wei, F.; Bai, X.; Lin, R.-C.; Vaziri, N.D. Metabolomics analysis revealsthe association between lipid abnormalities and oxidative stress, inflammation,fibrosis, and Nrf2 dysfunction in aristolochic acid-induced nephropathy. Sci.Rep. 2015, 5, 12936. 118. Chen, D.-Q.; Chen, H.; Chen, L.;Vaziri, N.D.; Wang, M.; Li, X.-R.; Zhao, Y.-Y. The link between phenotype andfatty acid metabolism in advanced chronic kidney disease. Nephrol. Dial.Transplant. 2017, 32, 1154–1166. 119. Wang, Z.; Koonen, D.; Hofker, M.; Fu,J.Y. Gut microbiome and lipid metabolism: From associations to mechanisms.Curr. Opin. Lipidol. 2016, 27, 216–224. 120. Xu, K.-Y.; Xia, G.-H.; Lu, J.-Q.;Chen, M.-X.; Zhen, X.; Wang, S.; You, C.; Nie, J.; Zhou, H.-W.; Yin, J.Impaired renal function and dysbiosis of gut microbiota contribute to increasedtrimethylamine-N-oxide in chronic kidney disease patients. Sci. Rep. 2017, 7,1445. 121. Vaziri, N.D.; Yuan, J.; Nazertehrani,S.; Ni, Z.; Liu, S. Chronic Kidney Disease Causes Disruption of Gastric andSmall Intestinal Epithelial Tight Junction. Am. J. Nephrol. 2013, 38,99–103. 122. Ikizler, T.A. Resolved: Being fat isgood for dialysis patients: The Godzilla effect: Pro. J. Am. Soc. Nephrol.2008, 19, 1059–1062. 123. Stenvinkel, P. Obesity in KidneyDisease. In Endocrine Disorders in Kidney Disease; Rhee, C., Kalantar-Zadeh,K., Brent, G., Eds.; Springer: Cham, Switzerland, 2019. 124. Pineiro, M.; Asp, N.-G.; Reid, G.;Macfarlane, S.; Morelli, L.; Brunser, O.; Tuohy, K. FAO Technical Meeting onPrebiotics. J. Clin. Gastroenterol. 2008, 42, S156–S159. 125. Younis, K.; Ahmad, S.; Jahan, K.Health benefits and application of prebiotics in foods. J. Food Process.Technol. 2015, 6, 1. 126. Connolly, M.L.; Lovegrove, J.A.;Tuohy, K.M. In Vitro Fermentation Characteristics of Whole Grain Wheat Flakesand the Effect of Toasting on Prebiotic Potential. J. Med. Food 2012, 15,33–43. 127. Newburg, D.S. Oligosaccharides inHuman Milk and Bacterial Colonization. J. Pediatr. Gastroenterol. Nutr. 2000,30, S8–S17. 128. Everard, A.; Lazarevic, V.; Derrien,M.; Girard, M.; Muccioli, G.M.; Neyrinck, A.M.; Possemiers, S.; Van Holle, A.;François, P.; De Vos, W.M.; et al. Responses of Gut Microbiota and Glucose andLipid Metabolism to Prebiotics in Genetic Obese and Diet-InducedLeptin-Resistant Mice. Diabetes 2011, 60, 2775–2786. 129. Cani, P.D.; Possemiers, S.; Van DeWiele, T.; Guiot, Y.; Everard, A.; Rottier, O.; Geurts, L.; Naslain, D.;Neyrinck, A.; Lambert, D.M.; et al. Changes in gut microbiota controlinflammation in obese mice through a mechanism involving GLP-2-drivenimprovement of gut permeability. Gut 2009, 58, 1091–1103. 130. Cerdó, T.; García-Santos, J.A.;Bermúdez, M.G.; Campoy, C. The Role of Probiotics and Prebiotics in thePrevention and Treatment of Obesity. Nutrients 2019, 11, 635. 131. Sanders, M.E.; Merenstein, D.J.; Reid,G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal healthand disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol.2019, 16, 605–616. 132. Mishra, S.P.; Wang, S.; Nagpal, R.;Miller, B.; Singh, R.; Taraphder, S.; Yadav, H. Probiotics and Prebiotics forthe Amelioration of Type 1 Diabetes: Present and Future Perspectives.Microorganisms 2019, 7, 67. 133. Hadi, A.; Mohammadi, H.; Miraghajani,M.; Ghaedi, E. Efficacy of synbiotic supplementation in patients withnonalcoholic fatty liver disease: A systematic review and meta-analysis ofclinical trials: Synbiotic supplementation and NAFLD. Crit. Rev. Food Sci.Nutr. 2019, 59, 2494–2505. 134. Sharma, R.; Kapila, R.; Kapila, S.Probiotics as Anti-immunosenescence Agents. Food Rev. Int. 2013, 29,201–216. 135. Moya-Pérez, A.; Neef, A.; Sanz, Y.Bifidobacterium pseudocatenulatum CECT 7765 Reduces Obesity-AssociatedInflammation by Restoring the Lymphocyte-Macrophage Balance and Gut MicrobiotaStructure in High-Fat Diet-Fed Mice. PLoS ONE 2015, 10, e0126976. 136. Zhang, W.; Wang, H.; Liu, J.; Zhao,Y.; Gao, K.; Zhang, J. Adhesive ability means inhibition activities forLactobacillus against pathogens and S-layer protein plays an important role inadhesion. Anaerobe 2013, 22, 97–103. 137. Kowalska, I.; Straczkowski, M.;Górski, J.; Kinalska, I. The effect of fasting and physical exercise on plasmaleptin concentrations in high-fat fed rats. J. Physiol. Pharmacol. 1999, 50,309–320. 138. Gan, L.; England, E.; Yang, J.Y.;Toulme, N.; Ambati, S.; Hartzell, D.L. A 72-h high fat diet increasestranscript levels of the neuropeptide galanin in the dorsal hippocampus of therat. BMC Neurosci. 2015, 16, 51. 139. Yan, W.-J.; Mu, Y.; Yu, N.; Yi, T.-L.;Zhang, Y.; Pang, X.-L.; Cheng, D.; Yang, J. Protective effects of metformin onreproductive function in obese male rats induced by high-fat diet. J. Assist.Reprod. Genet. 2015, 32, 1097–1104. 140. Abu, M.N.; Samat, S.; Kamarapani, N.;Hussein, F.N.; Ismail, W.I.W.; Hassan, H.F. Tinospora crispa AmelioratesInsulin Resistance Induced by High Fat Diet in Wistar Rats. Evid. BasedComplement. Altern. Med. 2015, 2015, 1–6. 141. Zhou, L.; Jang, K.Y.; Moon, Y.J.;Wagle, S.; Kim, K.M.; Lee, K.B.; Park, B.-H.; Kim, J.R. Leptin amelioratesischemic necrosis of the femoral head in rats with obesity induced by ahigh-fat diet. Sci. Rep. 2015, 5, 9397. 142. Bollheimer, L.C.; Buettner, R.;Pongratz, G.; Brunner-Ploss, R.; Hechtl, C.; Banas, M.; Singler, K.; Hamer,O.W.; Stroszczynski, C.; Sieber, C.C.; et al. Sarcopenia in the aging high-fatfed rat: A pilot study for modeling sarcopenic obesity in rodents. Biogerontology2012, 13, 609–620. 143. Faragher, R.; Frasca, D.; Remarque,E.; Pawelec, G. Better immunity in later life: A position paper. AGE 2014, 36,9619. 144. Iweala, O.I.; Nagler, C.R. TheMicrobiome and Food Allergy. Annu. Rev. Immunol. 2019, 37, 377–403. 145. Yousefi, B.; Eslami, M.; Ghasemian,A.; Kokhaei, P.; Sadeghnejhad, A. Probiotics can really cure an autoimmunedisease? Gene Rep. 2019, 15, 100364. 146. Childs, C.E.; Calder, P.C.; Miles,E.A. Diet and Immune Function. Nutrients 2019, 11, 1933. 147. Yuan, Z.-P.; Yang, M.; Liang, L.; Fu,J.-F.; Xiong, F.; Liu, G.-L.; Gong, C.-X.; Luo, F.-H.; Chen, S.-K.; Zhang,D.-D.; et al. Possible role of birth weight on general and central obesity inChinese children and adolescents: A cross-sectional study. Ann. Epidemiol.2015, 25, 748–752. 148. Rogers, I. The influence of birthweight and intrauterine environment on adiposity and fat distribution in laterlife. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 755–777. 149. Rockenbach, G.; Luft, V.C.; Mueller,N.T.; Duncan, B.B.; Stein, M.C.; Vigo, Á.; Matos, S.M.A.; Fonseca, M.J.M.;Barreto, S.M.; Benseñor, I.M.; et al. Sex-specific associations of birth weightwith measures of adiposity in mid-to-late adulthood: The Brazilian LongitudinalStudy of Adult Health (ELSA-Brasil). Int. J. Obes. 2016, 40, 1286–1291. 150. Logan, K.M.; Gale, C.; Hyde, M.J.;Santhakumaran, S.; Modi, N. Diabetes in pregnancy and infant adiposity:Systematic review and meta-analysis. Arch. Dis. Child Fetal Neonatal Ed. 2017,102, F65–F72. 151. Blencowe, H.; Cousens, S.;Oestergaard, M.Z.; Chou, D.; Moller, A.-B.; Narwal, R.; Adler, A.; Garcia,C.V.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates ofpreterm birth rates in the year 2010 with time trends since 1990 for selectedcountries: A systematic analysis and implications. Lancet 2012, 379,2162–2172. 152. Harrison, M.S.; Goldenberg, R.L.Global burden of prematurity. Semin. Fetal Neonatal Med. 2016, 21, 74–79. 153. Lee, A.C.; Kozuki, N.; Cousens, S.;Stevens, G.A.; Blencowe, H.; Silveira, M.F.; Sania, A.; Rosen, H.E.;Schmiegelow, C.; Adair, L.S.; et al. Estimates of burden and consequences ofinfants born small for gestational age in low and middle income countries withINTERGROWTH-21st standard: Analysis of CHERG datasets. BMJ 2017, 358,j3677. 154. Crume, T.L.; Ogden, L.; West, N.A.;Vehik, K.S.; Scherzinger, A.; Daniels, S.; McDuffie, R.; Bischoff, K.; Hamman,R.F.; Norris, J.M.; et al. Association of exposure to diabetes in utero withadiposity and fat distribution in a multiethnic population of youth: TheExploring Perinatal Outcomes among Children (EPOCH) Study. Diabetologia 2011,54, 87–92. 155. Malcolm, J. Through the looking glass:Gestational diabetes as a predictor of maternal and offspring long-term health.Diabetes Metab. Res. Rev. 2012, 28, 307–311. 156. Boyle, K.E.; Patinkin, Z.W.; Shapiro,A.L.B.; Baker, I.I.P.R.; Dabelea, D.; Friedman, J.E. Mesenchymal stem cellsfrom infants born to obese mothers exhibit greater potential for adipogenesis:The Healthy Start Baby BUMP Project. Diabetes 2016, 65, 647–659. 157. Whitaker, R.C.; Wright, J.A.; Pepe,M.S.; Seidel, K.D.; Dietz, W.H. Predicting obesity in young adulthood fromchildhood and parental obesity. N. Engl. J. Med. 1997, 337, 869–873. 158. Pascale, A.; Marchesi, N.; Govoni, S.;Coppola, A.; Gazzaruso, C. The role of gut microbiota in obesity, diabetesmellitus, and effect of metformin: New insights into old diseases. Curr OpinPharmacol, 2019, 49, 1–5. 159. Luoto, R.; Kalliomäki, M.; Laitinen,K.; Isolauri, E. The impact of perinatal probiotic intervention on thedevelopment of overweight and obesity: Follow-up study from birth to 10 years.Int. J. Obes. 2010, 34, 1531–1537. 160. Shin, N.R.; Lee, J.C.; Lee, H.Y.; Kim,M.S.; Whon, T.W.; Lee, M.S.; Bae, J.W. An increase in the Akkermansia spp.population induced by metformin treatment improves glucose homeostasis indiet-induced obese mice. Gut 2014, 63, 727–735. 161. Vähämiko, S.; Laiho, A.; Lund, R.;Isolauri, E.; Salminen, S.; Laitinen, K. The impact of probioticsupplementation during pregnancy on DNA methylation of obesity-related genes inmothers and their children. Eur. J. Nutr. 2018, 58, 367–377. 162. Everard, A.; Belzer, C.; Geurts, L.;Ouwerkerk, J.P.; Druart, C.; Bindels, L.B.; Guiot, Y.; Derrien, M.; Muccioli,G.G.; Delzenne, N.M.; et al. Cross-talk between Akkermansia muciniphila andintestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA2013, 110, 9066–9071. 163. Spor, A.; Koren, O.; Ley, R.Unravelling the effects of the environment and host genotype on the gutmicrobiome. Nat. Rev. Genet. 2011, 9, 279–290. 164. Ursell, L.K.; Clemente, J.C.; Rideout,J.R.; Gevers, D.; Caporaso, J.G.; Knight, R. The interpersonal andintrapersonal diversity of human-associated microbiota in key body sites. J.Allergy Clin. Immunol. 2012, 129, 1204–1208. 165. Arumugam, M.; Raes, J.; Pelletier, E.;Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.;Batto, J.-M.; et al. Enterotypes of the human gut microbiome. Nature 2011, 473,174–180. 166. Zimmer, J.; Lange, B.; Frick, J.S.;Sauer, H.; Zimmermann, K.; Schwiertz, A.; Rusch, K.; Klosterhalfen, S.; Enck,P. A vegan or vegetarian diet substantially alters the human colonic faecalmicrobiota. Eur. J. Clin. Nutr. 2012, 66, 53. 167. Salonen, A.; Lahti, L.; Salojärvi, J.;Holtrop, G.; Korpela, K.; Duncan, S.H.; Date, P.; Farquharson, F.; Johnstone,A.M.; Lobley, G.E.; et al. Impact of diet and individual variation onintestinal microbiota composition and fermentation products in obese men. ISMEJ. 2014, 8, 2218–2230. 168. Popkin, B.M. The Nutrition Transitionand Obesity in the Developing World. J. Nutr. 2001, 131, 871S–873S. 169. Caesar, R.; Tremaroli, V.;Kovatcheva-Datchary, P.; Cani, P.D.; Bäckhed, F. Crosstalk between GutMicrobiota and Dietary Lipids Aggravates WAT Inflammation through TLRSignaling. Cell Metab. 2015, 22, 658–668. 170. King, D.E. ; Mainous, AG, 3rd.Lambourne CA. Trends in dietary fiber intake in the United States, 1999–2008.J. Acad. Nutr. Diet. 2012, 112, 642–648. 171. Sonnenburg, E.D.; Sonnenburg, J.L.Starving our microbial self: The deleterious consequences of a diet deficientin microbiota-accessible carbohydrates. Cell Metab. 2014, 20, 779–786. 172. Desai, M.S.; Seekatz, A.M.;Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M. Adietary fiber-deprivedgut microbiota degrades the colonic mucus barrier and enhances pathogensusceptibility. Cell 2016, 167, 1339–1353. 173. Turnbaugh, P.J.; Hamady, M.;Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones,W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese andlean twins. Nature 2009, 457, 480. 174. Ley, R.E.; Turnbaugh, P.J.; Klein, S.;Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity.Nature 2006, 444, 1022. 175. Wu, G.D.; Chen, J.; Hoffmann, C.;Bittinger, K.; Chen, Y.-Y.; Keilbaugh, S.A.; Bewtra, M.; Knights, D.; Walters,W.A.; Knight, R.; et al. Linking long-term dietary patterns with gut microbialenterotypes. Science 2011, 334, 105–108. 176. Guinane, C.M.; Cotter, P.D. Role ofthe gut microbiota in health and chronic gastrointestinal disease:Understanding a hidden metabolic organ. Ther. Adv. Gastroenterol. 2013, 6,295–308. 177. Hildebrandt, M.A.; Hoffmann, C.;Sherrill-Mix, S.A.; Keilbaugh, S.A.; Hamady, M.; Chen, Y.; Knight, R.; Ahima,R.S.; Bushman, F.; Wu, G.D.; et al. High-fat diet determines the composition ofthe murine gut microbiome independently of obesity. Gastroenterology 2009, 137,1716–1724. 178. Zhang, Z.; Zhou, Z.; Li, Y.; Zhou, L.;Ding, Q.; Xu, L. Isolated exopolysaccharides from Lactobacillus rhamnosus GGalleviated adipogenesis mediated by TLR2 in mice. Sci. Rep. 2016, 6, 36083. 179. Kim, S.-W.; Park, K.-Y.; Kim, B.; Kim,E.; Hyun, C.-K. Lactobacillus rhamnosus GG improves insulin sensitivity andreduces adiposity in high-fat diet-fed mice through enhancement of adiponectinproduction. Biochem. Biophys. Res. Commun. 2013, 431, 258–263. 180. Savcheniuk, O.; Kobyliak, N.; Kondro,M.; Virchenko, O.; Falalyeyeva, T.; Beregova, T. Short-term periodicconsumption of multiprobiotic from childhood improves insulin sensitivity,prevents development of non-alcoholic fatty liver disease and adiposity inadult rats with glutamate-induced obesity. BMC Complement. Altern. Med. 2014,14, 247. 181. Vos, W.M. Fame and future of faecaltransplantations—developing next-generation therapies with syntheticmicrobiomes. Microb. Biotechnol. 2013, 6, 316–325. 182. Plovier, H.; Everard, A.; Druart, C.;Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.;Lichtenstein, L. A purified membrane protein from Akkermansia muciniphila orthe pasteurized bacterium improves metabolism in obese and diabetic mice. Nat.Med. 2017, 23, 107–113. 183. Depommier, C.; Everard, A.; Druart,C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter,D.; Delzenne, N.M.; et al. Supplementation with Akkermansia muciniphila inoverweight and obese human volunteers: A proof-of-concept exploratory study.Nat. Med. 2019, 25, 1096–1103. 184. Bárcena, C.; Valdés-Mas, R.; Mayoral,P.; Garabaya, C.; Durand, S.; Rodríguez, F.; Fernández-García, M.T.; Salazar,N.; Nogacka, A.M.; Garatachea, N.; et al. Healthspan and lifespan extension byfecal microbiota transplantation into progeroid mice. Nat. Med. 2019, 25,1234–1242. 185. Gough, E.; Shaikh, H.; Manges, A.R.Systematic Review of Intestinal Microbiota Transplantation (FecalBacteriotherapy) for Recurrent Clostridium difficile Infection. Clin. Infect.Dis. 2011, 53, 994–1002. 186. Available online:www.clinicaltrials.gov/ct2/results?cond=fecal+microbiota+transplantation+obesity(accessed on 12 July 2019).187. Ridaura, V.K.; Faith, J.J.; Rey, F.E.;Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.;Bain, J.R.; et al. Gut Microbiota from Twins Discordant for Obesity ModulateMetabolism in Mice. Science 2013, 341, 1241214. 188. Cani, P.D. Human gut microbiome:Hopes, threats and promises. Gut 2018, 67, 1716–1725. 189. Roller, M.; Femia, A.P.; Caderni, G.;Rechkemmer, G.; Watzl, B. Intestinal immunity of rats with colon cancer ismodulated by oligofructose-enriched inulin combined with Lactobacillusrhamnosus and Bifidobacterium lactis. Br. J. Nutr. 2004, 92, 931–938. 190. Li, K.; Zhang, L.; Xue, J.; Yang, X.;Dong, X.; Sha, L.; Lei, H.; Zhang, X.; Zhu, L.; Wang, Z.; et al. Dietary inulinalleviates diverse stages of type 2 diabetes mellitus via anti-inflammation andmodulating gut microbiota in db/db mice. Food Funct. 2019, 10, 1915–1927. 191. De Filippo, C.; Cavalieri, D.; DiPaola, M.; Ramazzotti, M.; Poullet, J.B.; Massart, S.; Collini, S.; Pieraccini,G.; Lionetti, P. Impact of diet in shaping gut microbiota revealed by acomparative study in children from Europe and rural Africa. Proc. Natl. Acad.Sci. USA 2010, 107, 14691–14696. 192. Hickl, O.; Heintz-Buschart, A.;Trautwein-Schult, A.; Hercog, R.; Bork, P.; Wilmes, P.; Becher, D. Samplepreservation and storage significantly impact taxonomic and functional profilesin metaproteomics studies of the human gut microbiome. Microorganisms 2019, 7,367. 193. Sridharan, G.V.; Choi, K.; Klemashevich,C.; Wu, C.; Prabakaran, D.; Bin Pan, L.; Steinmeyer, S.; Mueller, C.;Yousofshahi, M.; Alaniz, R.C.; et al. Prediction and quantification ofbioactive microbiota metabolites in the mouse gut. Nat. Commun. 2014, 5, 5492.