合生元定义不明、使用混乱?ISAPP专家发布权威共识
摘要
2019 年 5 月,国际益生菌和益生元科学协会(ISAPP)召集了一个由营养学家、生理学家和微生物学家组成的小组,讨论了合生元(synbiotics)的定义和范围。
该小组将合生元的定义更新为 “由具有活性的微生物和可被宿主微生物选择性利用的底物组成的混合物,且该混合物能给宿主带来益生作用”。
专家组的结论是,将合生元定义为简单的益生菌和益生元的混合物,可能会阻止合生元的创新。因为这样的定义要求每种成分必须满足益生菌或益生元的证据和剂量要求,而这可能会对合生元的发展构成障碍。
专家小组指出,一种没有被设计成各组分能协同工作的互补合生元必须由益生菌和益生元组成,而协同合生元则不必如此。协同合生元是一类底物可被共同施用的活性微生物选择性利用的合生元。
本共识声明进一步探讨了证据水平(现有的和需要的)、安全性、对目标的影响以及对合生元概念的利益相关者的影响。
介绍
25 年前,当合生元的概念首次被描述时,人们就想到了可以将选择性发酵的非消化食品成分(益生元)与益生菌结合5。因此,合生元(synbiotics)被宽泛地定义为 “对宿主产生有益影响的益生菌和益生元”的混合物5。
Box1 |专家组关于合成元的主要讨论结果
● “合生元”的定义已更新为“由具有活性的微生物和可被宿主微生物选择性利用的底物组成的混合物,且该混合物能给宿主带来益生作用”。● 在该定义中,“宿主微生物”包括原生(寄生或定植于宿主)和外来(外源的,如益生菌)微生物,其中任何一种都可以成为合生元中底物的目标。
● 合生元有两种:互补型和协同型。“协同合生元”中底物被设计为被共同施用的微生物选择性地利用;“互补合生元”是一种由益生菌和益生元结合而成的合生元,其设计目标是原生微生物,所采用的成分必须满足现有的益生菌和益生元的最低标准。
● 必须在目标宿主中包括人类、伴侣动物、农业物种或其亚群(如不同年龄或发育阶段、健康状况、性别或生活环境),确认共生菌对健康的有益影响。
● 在同一研究中确定有益健康且被选择性利用底物的证据,这是被认定为协同合生元的前提,其目的是为了证明综合效果优于各分量单独估计的效果。这一步骤对于互补合生元是不需要的,因为它包含了已经确定可被选择性利用的益生元。
● 合生元可以应用于肠道或肠道外的微生物生态系统,并可能被制成符合一系列监管类别的产品(如食品、非食品、饲料、药物或营养补充剂)。
● 定义中隐含了:用于预期用途的合生元的安全性已经确定。
● “symbiotic”不是“synbiotic”的同义词,这种理解是不正确的。
定义的更新
要制定协同增效生物制剂,就要根据微生物提供健康效益的能力来选择活的微生物,并选择主要支持该选定微生物生长或活性的底物14。虽然该底物也可能促进胃肠道菌群的其它有益微生物,但其主要目标是摄入的微生物。
设计和证明协同合生元的疗效是实验上的挑战。据我们所知,几乎所有在已发表的临床试验中使用的或市售的合成生素都是互补型的15,不管它们是否被刻意设计或命名为互补型,其中设计互补型和协同型合生元的方法如图 Fig. 2 所示。
合生元的特征
目前的证据水平
有许多试验在患有代谢性疾病的成年人中进行,包括超重和肥胖21,22,2 型糖尿病23,24和非酒精性脂肪肝疾病25,26。当然对其他生理条件也进行了调查,如肠易激综合征27、外科感染28,29、慢性肾脏疾病30,31和特应性皮炎32。
因此,有许多研究通过系统性审查和荟萃分析 RCTs 的方法,来评估合成元对目标疾病的影响22,23,32-35,这类方法是一种公认评价合生元益生作用的手段36-38。
例如在一项双盲 RCT 中,在肛周肿瘤手术前 4 天和手术后 10 天,每天服用两次由嗜酸乳杆菌 10(109 CFU)、鼠李糖乳杆菌 HS111(109 CFU)、乳酸菌casei 10(109 CFU)、双歧杆菌(109 CFU)和果寡糖(100 mg)组成的合生元,可使术后感染的数量降低,与接受安慰剂(蔗糖)的患者相比,抗生素治疗时间更短,非感染性并发症更少,住院时间更短且死亡率更低45。
在 225 名超重和肥胖的成年人的 RCT 中46,一种动物双歧杆菌 lactis 420 和聚葡萄糖组成的混合物(每天 12 克)可使体脂量相对减少 4.5%,而单独的益生菌或底物则没有治疗效果。
一般来说,合生元的剂量、持续时间、成分组成与特定的背景相关,包括结局和宿主微生物组的基线47,以及共存的环境因素,如药物,习惯性饮食,当然也有尚未确定的宿主遗传因素。
合成制剂的必要证据
要产生这种证据,需要在目标宿主上进行设计合理、有效的实验以及试验。这些研究应遵循标准的人体试验设计和报告指南48,并考虑饮食菌群研究的最佳实践49。
该研究还应符合 CONSORT 48中列出的标准并应在招募前进行注册,包括对所有结果的描述。这些 CONSOR 标准包括微生物的指导原则、微生物群相关的依从性和结果测量、相关的亚群,以及评估微生物群作为临床效果中介的统计学考虑。
虽然体外和动物模型经常用于测试益生菌、益生元和合生元50~53的效果,但我们的立场是,这些预测作用尚未得到充分验证,这些干预措施的最终测试必须在目标宿主中进行。
正如体外研究表明,一些碳水化合物底物增加了益生菌抗菌化合物的产生54。不同的微生物能够利用不同的底物并产生不同的抗菌因子并中和或杀死不同的类群,所以,不同的情况可能会导致积极或消极的结果。
为此 Sanders 等人55做出一个展望,期待使用一种配方(例如,一种益生元或一种益生菌)的研究证据来外推到不同的配方(例如,混合一种益生元和一种益生菌)。
只要符合互补型或协同型合生元的标准,商业产品标签上就可以使用“合生元”这一术语。虽然对健康目标的类型没有限制,但它必须是现实的并且是由机制所驱动的。a商业产品中的有效剂量必须在保质期结束前一直存在。b还需要进行研究、记录益生菌和益生元成分对健康的效益。
合生元研究的指导原则
最后一次抗生素接触的时间标准取决于一系列因素,包括抗生素的类型、剂量、持续时间以及是否在相当短的时间内多次使用抗生素57,58。一般很难做出精确的建议,因此通常排除研究前 3 个月服用过抗生素的人群,最少也要停用抗生素 4 周。
Box 2 |实际和假想的例子来说明合生元的概念
例1在一项四臂单盲试验中,41 名健康志愿者随机接受了动物双歧杆菌 lactis Bi-07 (109 CFU / 天)、 8 g /天木糖寡糖(XOs)、两者的组合或作为对照的麦芽糊精,服用 21 天128。
结果发现,与对照组相比,XOs 增强了合生元和益生元组粪便中的双歧杆菌数量,并改善了健康成人的血脂水平和免疫功能的调节标记。
且联合使用时,观察到镇痛药的出现最低使用率,同时 B 细胞上 CD19 的表达降低(作为免疫功能的标记)。因此,这种组合发挥了单独的益生菌或益生元不能提供的某些好处。
这项研究表明,每天 8 克的 XOs 具有益生元的作用。而之前的证据支持动物双歧杆菌 lactis Bi-07 109CFU/天符合益生菌112,129的标准。综上,该测试产品符合我们对互补型合生元的定义。
然而由于在喂食合生元的个体中没有观察到双歧杆菌的增加,因此它不符合我们对协同合生元的定义。
例2
Krumbeck 等21在肥胖人群(每组 17-19 人)中进行了平行的多臂、双盲随机对照试验,评估含 5g 半乳糖寡糖(GOs)和 109CFU/天的青春双歧杆菌 IVS-1 对肠道屏障功能的影响。
试验菌株是通过一种体内选择策略获得的,该策略旨在选择有望提供协同结果的菌株。
除了合生元,还设置了单独使用 GOs 组、单独使用青春双歧杆菌 IVS-1 组和安慰剂(乳糖)对照组。
食用 3 周后,对双歧杆菌进行了属特异性和株特异性的实时定量 PCR 来评估其绝对丰度的变化。此外为了评估肠道通透性,在摄入糖混合物后测定尿液中的非代谢糖。
结果表明,三种治疗(GOs、青春双歧杆菌 IVS-1 和联合治疗)均能显著改善肠屏障功能,但三组间差异无统计学意义;菌株青春双歧杆菌 IVS-1 组的丰度显著增加,而添加 GOs 作为合生元并没有进一步增加;与基线相比,三组处理均显著增加了粪便双歧杆菌的绝对丰度,但三组间差异无统计学意义。
尽管联合使用、益生菌和益生元均提高了结肠通透性标志物,且均提高了粪便双歧杆菌水平,但该研究不支持我们对协同合生元的定义。
例3
在一项假设性研究中,将一种已确定的益生菌底物(例如,GOs 或菊粉)与一种已确定的益生菌结合起来,其剂量为能够被选择性利用并对健康有益(主要结果显示反应的可能性提高)。
经测试表明,与对照品相比,这种组合产品具有健康益处(不一定与之前测试的益生菌和益生元的益处相同),因此该产品将符合我们的定义的互补型合生元。
例4
在一项假设性研究中,将每剂量为 1g 的底物(不是益生元)与 106 CFU的活微生物(不是益生菌)相结合。
临床前测试表明,活性微生物选择性地利用底物。
进行观察目标宿主的健康和微生物组终点的研究,包括每剂量 106 CFU 的活微生物组、每剂量 1g 的底物组、每剂量 106 CFU 的活微生物加上每剂量 1g 的底物的组合组,以及对照组。
微生物组的分析支持组合物的选择性利用,同时组合物改善了某一健康或治疗终点,且综合效果优于估计效果。该产品符合我们对协同合生元的定义。
例5
底物(不是已确定的益生菌)加上活微生物(不是已确定的益生菌)与对照组进行测试,发现它对健康有益,并增加了粪便中双歧杆菌的含量。
为了满足协同增效生物的标准,必须证明底物的健康益处和选择性利用超过了对照组和每个单独成分的观察结果。由于按使用的剂量,构成混合物的成分不是既定的益生菌或益生元,因此不符合我们对互补型合生元的定义。
设计合生元试验
虽然肠道微生物的变化很快(几天之内)60,但是目前,肠道微生物和微生物代谢物(如短链脂肪酸)的变化并不被监管机构所接受其作为健康结果的衡量标准61。
导致无响应表型的原因有多种,包括所需肠道微生物(天然或引入的益生菌)的有限可用的生态位47、有限的微生物生产底物62、对特定微生物表现出不耐受的宿主免疫系统63或宿主菌群中缺乏特定微生物3。
微生物群选择性利用的测量可能涉及不同的方法,包括体外模型系统和目标宿主体内研究。例如,可以通过使用成熟的体外肠道模型证明底物的选择性64,该模型包括在规定的时间过程中测量底物和产物。
对于协同型合生元,应该使用定量活微生物的方法来证明目标菌株确实已富集21,同时,其他方法也可用于证明其功能已增强。
可用于测量的微生物群落特征包括对整个肠道微生物和微生物群落多样性的表征65、特定分类群的丰度和/或活性66、微生物与微生物或微生物与宿主的接近性67、特定微生物基因或值得研究的基因簇和/或代谢物的存在和/或丰度68。
合生元安全措施
迄今为止,益生菌与益生元都显示出很强的安全性67~74,带有益生菌的合生元配方在用于相同目的时,通常也被认为是安全的。然而,必须对新配方进行适当的安全性评估。
尽管如此,CONSORT 75为报告不良反应和严重不良反应提供了明确的指导,并应遵循这些标准。在没有正当理由的情况下,将此类事件描述为“与本文研究无关”是不可接受的。
对涉及益生元、益生菌和合生元的 384 项干预措施进行了系统回顾,发现 37%的随机对照试验没有报告安全相关数据,89 项研究仅使用一般性陈述来描述不良事件76。高达 98%的研究没有提供不良事件或严重不良事件的定义、因不良事件而退出的参与者数量或每个研究组的不良事件和严重不良事件的数量。
van den Nieuwboer 及其同事72,77-79回顾了益生菌和合生元干预研究中报告的不良事件,并根据不良事件系统的通用术语标准对其进行了分类80,他们发现,每一类不良事件的发生率与对照组没有差别,或者常常低于治疗组。
共识的影响
在商业供应链中,许多不同的行业部门,包括原料供应商、最终产品制造商和零售商都对如何定义合生元非常感兴趣。由于合生元产品在临床试验中的使用越来越频繁,科学家有责任澄清这一术语的恰当用法,就像“益生元”12和“益生菌”13一样。
第一次提到合生元是在 1995 年,通过 PubMed 搜索,在 2019 年,使用该术语发表了 269 篇论文。此外,预计该词汇在消费者中的曝光率将不断增加。因此希望本文中的定义是明确和广泛接受的,并将反对包括科学家在内的相关人士滥用这一术语 8。
监管方面的复杂情况可能会导致某些地区对益生菌进行特定的监管。例如,加拿大81~82、意大利83、阿根廷84、智利85、哥伦比亚86和巴西87对益生菌食品或补充剂有特定要求。
此外,食品法典委员会正在考虑一项提案88,该提案可能会产生益生菌的全球标准89。《食品法典》是在联合国粮食及农业组织和世界卫生组织主持下,为保护消费者健康和促进食品贸易中的公平做法而通过的标准、准则和行为守则的集合。食品法典委员会的标准可能会影响全球益生菌产品的交易。
研究参与者肠道菌群的基本组成可能是一个有用的分层因子91~92。这种分层可以提高对可观察到的效应的理解,并且可以用来描述应答者和非应答者。
最终,这种方法可以使临床试验结果更好地服务于那些可能受益的人。
参与出版过程的科学家(作者、编辑、评论员)应正确使用合生元一词,并拒绝错误或不支持使用该词,即使在一项进行良好的研究中给定的治疗不能证明效果(即接受无效假设),这些结果仍然值得发表93。
在某种程度上行业基金研究是至关重要的,研究坚持既定的指导方针,以管理利益冲突和尽量减少偏见94,95。
结论
1.Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).2.Walker, A. W. & Lawley, T. D. Therapeutic modulation of intestinal dysbiosis. Pharmacol. Res. 69, 75–86 (2013).3.Deehan, E. C. et al. Modulation of the gastrointestinal microbiome with nondigestible fermentable carbohydrates to improve human health. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.BAD-0019-2017 (2017).4.Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).5.Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995).6.Andriulli, A. et al. Clinical trial on the efficacy of a new symbiotic formulation, Flortec, in patients with irritable bowel syndrome: a multicenter, randomized study. J. Clin. Gastroenterol. 42, S218–S223 (2008).7.Cappello, C., Tremolaterra, F., Pascariello, A., Ciacci, C. & Iovino, P. A randomised clinical trial (RCT) of a symbiotic mixture in patients with irritable bowel syndrome (IBS): effects on symptoms, colonic transit and quality of life. Int. J. Colorectal Dis. 28, 349–358 (2013).8.Martin, R. & Langella, P. Emerging health concepts in the probiotics field: streamlining the definitions. Front. Microbiol. 10, 1047 (2019).9.Oliveira, R. P. et al. Effect of different prebiotics on the fermentation kinetics, probiotic survival and fatty acids profiles in nonfat symbiotic fermented milk. Int. J. Food Microbiol. 128, 467–472 (2009).10.Collado, M. C., Vinderola, G. & Salminen, S. Postbiotics: facts and open questions. A position paper on the need for a consensus definition. Benef. Microbes 10, 711–719 (2019).11.Shanahan, F. & Collins, S. M. Pharmabiotic manipulation of the microbiota in gastrointestinal disorders, from rationale to reality. Gastroenterol. Clin. North. Am. 39, 721–726 (2010).12.Hill, C. et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11, 506–514 (2014). Important paper updating the probiotic concept.13.Gibson, G. R. et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol.14.491–502 (2017). Important paper updating the prebiotic concept. Paper includes the author who first introduced the concept of ‘prebiotics’. 14. Kolida, S. & Gibson, G. R. Synbiotics in health and disease. Annu. Rev. Food Sci. Technol. 2, 373–393 (2011). This article acknowledges the importance of differentiating between two distinct types of synbiotic: the complementary synbiotic (microbial and substrate components act independently) and the synergistic synbiotic (the substrate component is chosen to support the growth of the microbial component). Differentiating synbiotics in this way ensures that the development of synbiotics is not constrained in any way and indeed encourages innovation.15.Krumbeck, J. A., Walter, J. & Hutkins, R. W. Synbiotics for improved human health: Recent developments, challenges, and opportunities. Annu. Rev. Food Sci. Technol. 9, 451–479 (2018).16.Gerardo, N. & Hurst, G. Q&A: friends (but sometimes foes) within: the complex evolutionary ecology of symbioses between host and microbes. BMC Biol. 15, 126 (2017).17.Srivastava, A. & Mishra, S. Enrichment and evaluation of galacto- oligosaccharides produced by whole cell treatment of sugar reaction mixture. Mol. Biol. Rep. 46, 1181–1188 (2019).18.Porras- Dominguez, J. R. et al. Frucooligosaccharides purification: complexing simple sugars with phenylboronic acid. Food Chem. 285, 204–212 (2019). 19.Crittenden, R. G. & Playne, M. J. Production, properties and applications of food- grade oligosaccharides. Trends Food Sci. Technol. 7, 353–361 (1996).20.Jackson, S. A. et al. Improving end- user trust in the quality of commercial probiotic products. Front. Microbiol. 10, 739 (2019).21.Krumbeck, J. A. et al. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 6, 121 (2018). In this paper, a synbiotic consisting of Bifidobacterium strains and galactooligosaccharides did not demonstrate functional synergism but showed that the microorganism and fermentative substrate components by themselves improved the markers of colonic permeability.22.Hadi, A., Alizadeh, K., Hajianfar, H., Mohammadi, H. & Miraghajani, M. Efficacy of synbiotic supplementation in obesity treatment: a systematic review and meta analysis of clinical trials. Crit. Rev. Food Sci. Nutr. 60,584–596 (2020).23.Mahboobi, S., Rahimi, F. & Jafarnejad, S. Effects of prebiotic and synbiotic supplementation on glycaemia and lipid profile in type 2 diabetes: a meta- analysis of randomized controlled trials. Adv. Pharm. Bull. 8, 565–574 (2018).24.Nikbakht, E. et al. Effect of probiotics and synbiotics on blood glucose: a systematic review and meta- analysis of controlled trials. Eur. J. Nutr. 57, 95–106 (2018).25.Sharpton, S. R., Maraj, B., Harding- Theobald, E., Vittinghoff, E. & Terrault, N. A. Gut microbiome targeted therapies in nonalcoholic fatty liver disease: a systematic review, meta- analysis, and meta-regression. Am. J. Clin. Nutr. 110, 139–149 (2019).26.Hadi, A., Mohammadi, H., Miraghajani, M. & Ghaedi, E. Efficacy of synbiotic supplementationin patients with nonalcoholic fatty liver disease: a systematic review and meta- analysis of clinical trials: Synbiotic supplementation and NAFLD. Crit. Rev. Food Sci. Nutr. 59, 2494–2505 (2019).27.Ford, A. C., Harris, L. A., Lacy, B. E., Quigley, E. M. M. & Moayyedi, P. Systematic review with meta- analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 48, 1044–1060 (2018).28.Skonieczna- Zydecka, K. et al. A systematic review, meta- analysis, and meta- regression evaluating the efficacy and mechanisms of action of probiotics and synbiotics in the prevention of surgical site infections and surgery- related complications. J. Clin. Med. 7, 556 (2018).29.Kasatpibal, N. et al. Effectiveness of probiotic, prebiotic, and synbiotic therapies in reducing postoperative complications: a systematic review and network metaanalysis. Clin. Infect. Dis. 64 (Suppl. 2), S153–S160(2017).30.McFarlane, C., Ramos, C. I., Johnson, D. W. & Campbell, K. L. Prebiotic, probiotic, and symbiotic supplementation in chronic kidney disease: a systematic review and meta- analysis. J. Ren. Nutr. 29, 209–220 (2019).31.Pisano, A., D’Arrigo, G., Coppolino, G. & Bolignano, D. Biotic supplements for renal patients: a systematic review and meta- analysis. Nutrients 10, 1224 (2018).32.Chang, Y. S. et al. Synbiotics for prevention and treatment of a dermatitis: a meta- analysis ofrandomized clinical trials. JAMA Pediatr. 170, 236–242 (2016). This meta- analysis provides evidence that supports the use of synbiotics for the treatment of atopic dermatitis, which is thought to be associated with altered gut microbiota that promote an environment that is more susceptible to allergic disease.33.Wu, X. D., Liu, M. M., Liang, X., Hu, N. & Huang, W. Effects of perioperative supplementation with pro-/ synbiotics on clinical outcomes in surgical patients:a meta- analysis with trial sequential analysis of randomized controlled trials. Clin. Nutr. 37, 505–515 (2018).34.Liu, L., Li, P., Liu, Y. & Zhang, Y. Efficacy of probiotics and synbiotics in patients with nonalcoholic fatty liver disease: a meta- analysis. Dig. Dis. Sci. 64, 3402–3412 (2019). This meta- analysis highlights the benefits of synbiotics for the hallmarks of non- alcoholic fatty liver disease, liver steatosis, liver enzymes, lipid profiles and liver stiffness.35.Chan, C. K. Y., Tao, J., Chan, O. S., Li, H. B. & Pang, H. Preventing respiratory tract infections by symbiotic interventions: A systematic review and meta- analysis of randomized controlled trials. Adv. Nutr. https:// doi.org/10.1093/advances/nmaa003 (2020).36.Clarke, M. & Chalmers, I. Reflections on the history of systematic reviews. BMJ Evid. Based Med. 23, 121–122 (2018).37.Institute of Medicine. Finding what works in health care: standards for systematic reviews (The National Academies Press, 2011).38.World Health Organization. WHO Handbook for Guideline Development (WHO, 2014).39.Komatsu, S. et al. Efficacy of perioperative synbiotics treatment for the prevention of surgical site infection after laparoscopic colorectal surgery: a randomized controlled trial. Surg. Today 46, 479–490 (2016).40.Anderson, A. D., McNaught, C. E., Jain, P. K. & MacFie, J. Randomised clinical trial of symbiotic therapy in elective surgical patients. Gut 53, 241–245 (2004).41.Sergeev, I. N., Aljutaily, T., Walton, G. & Huarte, E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 12, 222 (2020).42.Nabhani, Z., Hezaveh, S. J. G., Razmpoosh, E., Asghari- Jafarabadi, M. & Gargari, B. P. The effects of synbiotic supplementation on insulin resistance/ sensitivity, lipid profile and total antioxidant capacity in women with gestational diabetes mellitus: a randomized double blind placebo controlled clinical trial. Diabetes Res. Clin. Pract. 138, 149–157 (2018).43.Ustundag, G. H., Altuntas, H., Soysal, Y. D. & Kokturk, F. The effects of synbiotic “Bifidobacterium lactis B94 plus inulin” addition on standard triple therapy of Helicobacter pylori eradication in children. Can. J. Gastroenterol. Hepatol. 2017, 8130596(2017).44.Islek, A., Sayar, E., Yilmaz, A. & Artan, R. Bifidobacterium lactis B94 plus inulin for Treatmentof Helicobacter pylori infection in children: does it increase eradication rate and patient compliance? Acta Gastroenterol. Belg. 78, 282–286 (2015).45.Sommacal, H. M., Bersch, V. P., Vitola, S. P. & Osvaldt, A. B. Perioperative synbiotics decreasepostoperative complications in periampullary neoplasms: a randomized, double- blind clinical trial.Nutr. Cancer 67, 457–462 (2015).46.Stenman, L. K. et al. Probiotic with or without fiber controls body fat mass, associated with serum zonulin, in overweight and obese adults- randomized controlled trial. EBioMedicine 13, 190–200 (2016).47.Maldonado- Gomez, M. X. et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20, 515–526 (2016).48.Moher, D. et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. Int. J. Surg. 10, 28–55 (2012).49.Klurfeld, D. M. et al. Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome. Am. J. Physiol. Endocrinol. Metab. 315, E1087–E1097 (2018).50.Likotrafiti, E., Tuohy, K. M., Gibson, G. R. & Rastall, R. A. An in vitro study of the effect ofprobiotics, prebiotics and synbiotics on the elderly faecal microbiota. Anaerobe 27, 50–55 (2014).51.Pham, V. T. & Mohajeri, M. H. The application of in vitro human intestinal models on the screening and development of pre- and probiotics. Benef. Microbes 9, 725–742 (2018).52.Aabed, K. et al. Ameliorative effect of probiotics (Lactobacillus paracaseii and Protexin(R)) andprebiotics (propolis and bee pollen) on clindamycin and propionic acid- induced oxidative stress and altered gut microbiota in a rodent model of autism. Cell Mol. Biol. 65, 1–7 (2019).53.Ferrarese, R., Ceresola, E. R., Preti, A. & Canducci, F. Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era. Eur. Rev. Med. Pharmacol. Sci. 22, 7588–7605 (2018).54.Tzortzis, G., Baillon, M. L., Gibson, G. R. & Rastall, R. A. Modulation of anti- pathogenic activity in canine- derived Lactobacillus species by carbohydrate growth substrate. J. Appl. Microbiol. 96, 552–559 (2004).55.Sanders, M. E. et al. Effects of genetic, processing, or product formulation changes on efficacy and safety of probiotics. Ann. NY Acad. Sci. 1309, 1–18 (2014).56.Meance, S. et al. Recent advances in the use of functional foods: effects of the commercial fermented milk with Bifidobacterium animalis strain DN-173 010 and yoghurt strains on gut transit time in the elderly. Microb. Ecol. Health Dis. 15, 15–22 (2003).57.Dethlefsen, L. & Relman, D. A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl Acad. Sci. USA 108, 4554–4561 (2011).58.Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Invest. 124, 4212–4218 (2014).59.Le Bastard, Q. et al. Systematic review: human gut dysbiosis induced by non- antibiotic prescription medications. Aliment. Pharmacol. Ther. 47, 332–345(2018).60.David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).61.U.S. Food and Drug Administration. Guidance for Industry: Evidence- Based Review System for the Scientific Evaluation of Health Claims https://www.fda.gov/regulatory- information/search- fda-guidancedocuments/ guidance- industry-evidence- based-reviewsystem- scientific- evaluation-health- claims (2009).62.Davis, L. M., Martinez, I., Walter, J. & Hutkins, R. A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int. J. Food Microbiol. 144, 285–292 (2010).63.Donaldson, G. P. et al. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360, 795–800 (2018). 64. Cardarelli, H. R. et al. In vitro fermentation of prebiotic carbohydrates by intestinal microbiota in the presence of Lactobacillus amylovorus DSM 16998. Benef. Microbes 7, 119–133 (2016).65.Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012).66.Holmes, E., Li, J. V., Marchesi, J. R. & Nicholson, J. K. Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab. 16, 559–564 (2012).67.Earle, K. A. et al. Quantitative imaging of gut microbiota spatial organization. Cell Host Microbe 18, 478–488(2015).68.Lloyd- Price, J., Abu- Ali, G. & Huttenhower, C. The healthy human microbiome. Genome Med. 8,51 (2016).69.Closa- Monasterolo, R. et al. Safety and efficacy of inulin and oligofructose supplementation in infant formula: results from a randomized clinical trial. Clin. Nutr. 32, 918–927 (2013).70.Olesen, M. & Gudmand- Hoyer, E. Efficacy, safety, and tolerability of fructooligosaccharides in the treatment of irritable bowel syndrome. Am. J. Clin. Nutr. 72, 1570–1575 (2000).71.Lasekan, J., Baggs, G., Acosta, S. & Mackey, A. Soy protein- based infant formulas with supplemental fructooligosaccharides: gastrointestinal tolerance and hydration status in newborn infants. Nutrients 7, 3022–3037 (2015).72.van den Nieuwboer, M. & Claassen, E. Dealing with the remaining controversies of probiotic safety. Benef. Microbes 10, 605–616 (2019).73.Sanders, M. E. et al. Probiotic use in at-risk populations. J. Am. Pharm. Assoc. 56, 680–686 (2016).74.Sanders, M. E. et al. Safety assessment of probiotics for human use. Gut Microbes 1, 164–185 (2010).75.Ioannidis, J. P. et al. Better reporting of harms in randomized trials: an extension of the CONSORT statement. Ann. Intern. Med. 141, 781–788 (2004).76.Bafeta, A., Koh, M., Riveros, C. & Ravaud, P.Harms reporting in randomized controlled trialsof interventions aimed at modifying microbiota:a systematic review. Ann. Intern. Med. 169, 240–247 (2018).77.van den Nieuwboer, M. et al. The administration of probiotics and synbiotics in immune compromised adults: is it safe? Benef. Microbes 6, 3–17 (2015).78.van den Nieuwboer, M. et al. Safety of probiotics and synbiotics in children under 18 years of age. Benef. Microbes 6, 615–630 (2015).79.van den Nieuwboer, M., Claassen, E., Morelli, L., Guarner, F. & Brummer, R. J. Probiotic and symbiotic safety in infants under two years of age. Benef. Microbes 5, 45–60 (2014).80.NIH National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm (2018).81.Government of Canada. Accepted Claims about themNature of Probiotic Microorganisms in Food https://www.canada.ca/en/health-canada/services/foodnutrition/food-labelling/health- claims/acceptedclaims-about- nature-probiotic- microorganisms-food.html (2009).82.Governement of Canada. Questions and Answers on Probiotics https://www.canada.ca/en/health- canada/services/food- nutrition/food- labelling/health- claims/questions- answers-probiotics.html (2009).83.Ministero della Salute y Secretaría de Agricultura, Ganadería y Pesca. Guidelines on Probiotics and Prebiotics [Italian] http://www.salute.gov.it/imgs/C_17_pubblicazioni_1016_ulterioriallegati_ ulterioreallegato_0_alleg.pdf (2018).84.Secretaria de Politicas, Regulacion e Institutos, Ministerio de Salud, Argentina. Codigo Alimentario Argentino [Spanish] http://www.anmat.gov.ar/webanmat/Legislacion/Alimentos/Resolucion_Conjunta_ 261-2011_y_22-2011.pdf (2011).85.Departamento Agencia Nacional de Medicamentos, Salud Publica, Gobierno de Chile. Define regimen de control sanitario para productors en formas farmaceutias orales, elaborados con Lactobacillus spp., Bifidobacterium spp. y otros bacilos especificos [Spanish] https://www.carey.cl/download/filebase/newsalert/res- n-3435-probioticos.pdf (2018).86.Invima. Resolucion 288 de 2008 [Spanish]. http://normograma.invima.gov.co/docs/resolucion_ minproteccion_0288_2008.htm (2008).87.Agencia Nacional de Vigilancia Sanitaria. Guia para instrucao processual de peticao de avaliacao de probiotics para uso em alimentos [Portugese]. http://portal.anvisa.gov.br/documents/10181/ 5280930/21.pdf/1c99eeb1-7143-469a-93ff- 7b2b0f9187c0 (2019).88.Codex Alimentarius Commission. Joint FAO/WHO Food Standards Programme Codex Committee on Nutrition and Foods for Special Dietary Uses: Forty-first Session http://www.fao.org/fao- whocodexalimentarius/ sh- proxy/en/?lnk=1&url=https% 253A%252F%252Fworkspace.fao.org%252Fsites% 252Fcodex%252FMeetings%252FCX-720-41% 252FWD%252Fnf41_11e.pdf (2019).89.Mary Ellen Sanders. Harmonized Probiotic Guidelines to be Discussed at Codex Alimentarius Meeting November 24-29, ISAPP https://isappscience.org/ harmonized- probiotic-guidelines- to-be- discussed-atcodex- alimentarius- meeting-november-24-29/ (2019).90.Food Safety Authority of Ireland. Probiotic Health Claims https://www.fsai.ie/faq/probiotic_health_claims. html (2020).91.Healey, G. et al. Habitual dietary fibre intake influences gut microbiota response to an inulin- type fructan prebiotic: a randomised, double- blind, placebo ontrolled, cross- over, human intervention study. Br. J. Nutr. 119, 176–189 (2018). This study demonstrated that people with a high dietary fibre intake had a greater gut microbiota response and are therefore more likely to benefit from an inulin- type fructan prebiotic than those with a low dietary fibre intake.92.Dey, M. Toward a personalized approach in prebiotics research. Nutrients 9, 92 (2017).93.Walter, J., Armet, A. M., Finlay, B. B. & Shanahan, F. Establishing or exaggerating causality for the gut microbiome: lessons from human microbiotaassociated rodents. Cell 180, 221–232 (2020).94.Rowe, S. et al. Funding food science and nutrition research: financial conflicts and scientific integrity. J. Nutr. 139, 1051–1053 (2009).95.Alexander, N. et al. Achieving a transparent, actionable framework for public- private partnerships for food and nutrition research. Am. J. Clin. Nutr. 101, 1359–1363 (2015).96.Kanazawa, H. et al. Synbiotics reduce postoperative infectious complications: a randomized controlled trial in biliary cancer patients undergoing hepatectomy. Langenbecks Arch. Surg. 390, 104–113 (2005).97.Rammohan, A. et al. Synbiotics in surgery for chronic pancreatitis: are they truly effective? A single- blind prospective control trial. Ann. Surg. 262, 31–37 (2015).98.Rayes, N. et al. Effect of enteral nutrition and synbiotics on bacterial infection rates after pyloruspreserving pancreatoduodenectomy: a randomized, double- blind trial. Ann. Surg. 246, 36–41 (2007).99.Reddy, B. S. et al. Randomized clinical trial of effect of synbiotics, neomycin and mechanical bowel preparation on intestinal barrier function in patients undergoing colectomy. Br. J. Surg. 94, 546–554 (2007).100.Usami, M. et al. Effects of perioperative symbiotic treatment on infectious complications, intestinal integrity, and fecal flora and organic acids in hepatic surgery with or without cirrhosis. J. Parenter. Enter. Nutr. 35, 317–328 (2011).101.Eslamparast, T. et al. Synbiotic supplementation in nonalcoholic fatty liver disease: a randomized, doubleblind, placebo- controlled pilot study. Am. J. Clin. Nutr. 99, 535–542 (2014).102.Malaguarnera, M. et al. Bifidobacterium longum with fructo- oligosaccharides in patients with non- alcoholic steatohepatitis. Dig. Dis. Sci. 57, 545–553 (2012).103.Mofidi, F. et al. Synbiotic supplementation in lean patients with non- alcoholic fatty liver disease: a pilot, randomised, double- blind, placebo- controlled, clinical trial. Br. J. Nutr. 117, 662–668 (2017).104.Javadi, L. et al. Pro- and prebiotic effects on oxidative stress and inflammatory markers in non- alcoholic fatty liver disease. Asia Pac. J. Clin. Nutr. 27, 1031–1039 (2018).105.Panigrahi, P. et al. A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548, 407–412 (2017). This paper discussed the use of a symbiotic consisting of Lactobacillus plantarum and fructooligosaccharides in a large (4,500 participants) intervention study to protect infants against sep106.Hibberd, A. A. et al. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomized controlled trial of weight management in overweight adults. Benef. Microbes 10, 121–135 (2019).107.Eslamparast, T. et al. Effects of symbiotic supplementation on insulin resistance in subjects with the metabolic syndrome: a randomised, double- blind, placebo- controlled pilot study. Br. J. Nutr. 112, 438–445 (2014).108.Asemi, Z., Khorrami- Rad, A., Alizadeh, S. A., Shakeri, H. & Esmaillzadeh, A. Effects of synbiotic food consumption on metabolic status of diabetic patients: a double- blind randomized cross- over controlled clinical trial. Clin. Nutr. 33, 198–203 (2014).109.Shakeri, H. et al. Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes. Lipids 49, 695–701 (2014).110.Ahmadi, S., Jamilian, M., Tajabadi- Ebrahimi, M., Jafari, P. & Asemi, Z. The effects of symbiotic supplementation on markers of insulin metabolism and lipid profiles in gestational diabetes: a randomised, double-blind, placebo-controlled trial. Br. J. Nutr. 116, 1394–1401 (2016).111.Tajabadi- Ebrahimi, M. et al. A randomized controlled clinical trial investigating the effect of symbiotic administration on markers of insulin metabolism and lipid profiles in overweight type 2 diabetic patients with coronary heart disease. Exp. Clin. Endocrinol. Diabetes 125, 21–27 (2017).112.Maneerat, S. et al. Consumption of Bifidobacterium lactis Bi-07 by healthy elderly adults enhances phagocytic activity of monocytes and granulocytes. J. Nutr. Sci. 2, e44 (2013).113.Nova, E., Viadel, B., Warnberg, J., Carreres, J. E. & Marcos, A. Beneficial effects of a synbioticsupplement on self- perceived gastrointestinal wellbeing and immunoinflammatory status of healthy adults. J. Med. Food 14, 79–85 (2011). 、114. Soleimani, A. et al. The effects of symbiotic supplementation on metabolic status in diabetic patients undergoing hemodialysis: a randomized, double- blinded, placebo- controlled trial. Probiotics Antimicro. Prot. 11, 1248–1256 (2019).115.Rogha, M., Esfahani, M. Z. & Zargarzadeh, A. H. The efficacy of a synbiotic containing Bacillus coagulans in treatment of irritable bowel syndrome: a randomized placebo- controlled trial. Gastroenterol. Hepatol. Bed Bench 7, 156–163 (2014).116.Basturk, A., Artan, R. & Yilmaz, A. Efficacy of synbiotic, probiotic, and prebiotic treatments for irritable bowel syndrome in children: a randomized controlled trial. Turk. J. Gastroenterol. 27, 439–443 (2016).117.Shafaghi, A. et al. The effect of probiotic plus prebiotic supplementation on the tolerance and efficacy of Helicobacter pylori eradication quadruple therapy: a randomized prospective double blind controlled trial. Middle East J. Dig. Dis. 8, 179–188 (2016).118.irvan, B. N., Usta, M. K., Kizilkan, N. U. & Urganci, N. Are synbiotics added to the standard therapy to eradicate Helicobacter pylori in children beneficial? A randomized controlled study. Euroasian J. Hepatogastroenterol. 7, 17–22 (2017).119. Samimi, M. et al. The effects of symbiotic supplementation on metabolic status in women with polycystic ovary syndrome: a randomized double- blind clinical trial. Probiotics Antimicrob. Prot. 11, 1355–1361 (2019).120.Nasri, K. et al. The effects of symbiotic supplementation on hormonal status, biomarkers ofinflammation and oxidative stress in subjects with polycystic ovary syndrome: a randomized, doubleblind, placebo-controlled trial. BMC Endocr. Disord. 18, 21 (2018).121.Guida, B. et al. Effect of short- term synbiotic treatment on plasma p- cresol levels in patients with chronic renal failure: a randomized clinical trial. Nutr. Metab. Cardiovasc. Dis. 24, 1043–1049 (2014).122.Dehghani, H., Heidari, F., Mozaffari- Khosravi, H., Nouri- Majelan, N. & Dehghani, A. Synbiotic supplementations for azotemia in patients with chronic kidney disease: a randomized controlled trial. Iran. J. Kidney Dis. 10, 351–357 (2016).123.Rossi, M. et al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY):a randomized trial. Clin. J. Am. Soc. Nephrol. 11, 223–231 (2016).124.Kukkonen, K. et al. Probiotics and prebiotic galactooligosaccharides in the prevention of allergic diseases: a randomized, double- blind, placebo- controlled trial. J. Allergy Clin. Immunol. 119, 192–198 (2007).125.Gerasimov, S. V., Vasjuta, V. V., Myhovych, O. O. & Bondarchuk, L. I. Probiotic supplement reduces atopic dermatitis in preschool children: a randomized, double- blind, placebo- controlled, clinical trial. Am. J. Clin. Dermatol. 11, 351–361 (2010).126.Farid, R., Ahanchian, H., Jabbari, F. & Moghiman, T. Effect of a new synbiotic mixture on atopic dermatitis in children: a randomized- controlled trial. Iran. J. Pediatr. 21, 225–230 (2011).127.Wu, K. G., Li, T. H. & Peng, H. J. Lactobacillus salivarius plus fructo- oligosaccharide is superior to fructo- oligosaccharide alone for treating children with moderate to severe atopic dermatitis: a doubleblind randomized, clinical trial of efficacy and safety. Br. J. Dermatol. 166, 129–136 (2012).128.Childs, C. E. et al. Xylo- oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double- blind, placebo- controlled, randomised, factorial cross- over study. Br. J. Nutr. 111, 1945–1956 (2014).129.Favretto, D. C., Pontin, B. & Moreira, T. R. Effect of the consumption of a cheese enriched with probiotic organisms (Bifidobacterium lactis Bi-07) in improving symptoms of constipation. Arq. Gastroenterol. 50,196–201 (2013).