查看原文
其他

JS 运行机制最全面的一次梳理

作者:撒网要见鱼

http://www.dailichun.com/2018/01/21/js_singlethread_eventloop.html


前言

最近发现有不少介绍JS单线程运行机制的文章,但是发现很多都仅仅是介绍某一部分的知识,而且各个地方的说法还不统一,容易造成困惑。

因此准备梳理这块知识点,结合已有的认知,基于网上的大量参考资料,从浏览器多进程到JS单线程,将JS引擎的运行机制系统的梳理一遍。

展现形式:由于是属于系统梳理型,就没有由浅入深了,而是从头到尾的梳理知识体系,重点是将关键节点的知识点串联起来,而不是仅仅剖析某一部分知识。

内容是:从浏览器进程,再到浏览器内核运行,再到JS引擎单线程,再到JS事件循环机制,从头到尾系统的梳理一遍,摆脱碎片化,形成一个知识体系

目标是:看完这篇文章后,对浏览器多进程,JS单线程,JS事件循环机制这些都能有一定理解,有一个知识体系骨架,而不是似懂非懂的感觉。

另外,本文适合有一定经验的前端人员,新手请规避,避免受到过多的概念冲击。可以先存起来,有了一定理解后再看,也可以分成多批次观看,避免过度疲劳。

大纲

  • 区分进程和线程
  • 浏览器是多进程的
    • 浏览器都包含哪些进程?
    • 浏览器多进程的优势
    • 重点是浏览器内核(渲染进程)
    • Browser进程和浏览器内核(Renderer进程)的通信过程
  • 梳理浏览器内核中线程之间的关系
    • GUI渲染线程与JS引擎线程互斥
    • JS阻塞页面加载
    • WebWorker,JS的多线程?
    • WebWorker与SharedWorker
  • 简单梳理下浏览器渲染流程
    • load事件与DOMContentLoaded事件的先后
    • css加载是否会阻塞dom树渲染?
    • 普通图层和复合图层
  • 从Event Loop谈JS的运行机制
    • 事件循环机制进一步补充
    • 单独说说定时器
    • setTimeout而不是setInterval
  • 事件循环进阶:macrotask与microtask
  • 写在最后的话

区分进程和线程

线程和进程区分不清,是很多新手都会犯的错误,没有关系。这很正常。先看看下面这个形象的比喻:

- 进程是一个工厂,工厂有它的独立资源

- 工厂之间相互独立

- 线程是工厂中的工人,多个工人协作完成任务

- 工厂内有一个或多个工人

- 工人之间共享空间

再完善完善概念:

- 工厂的资源 -> 系统分配的内存(独立的一块内存)

- 工厂之间的相互独立 -> 进程之间相互独立

- 多个工人协作完成任务 -> 多个线程在进程中协作完成任务

- 工厂内有一个或多个工人 -> 一个进程由一个或多个线程组成

- 工人之间共享空间 -> 同一进程下的各个线程之间共享程序的内存空间(包括代码段、数据集、堆等)

然后再巩固下:

如果是windows电脑中,可以打开任务管理器,可以看到有一个后台进程列表。对,那里就是查看进程的地方,而且可以看到每个进程的内存资源信息以及cpu占有率。

所以,应该更容易理解了:进程是cpu资源分配的最小单位(系统会给它分配内存)

最后,再用较为官方的术语描述一遍:

  • 进程是cpu资源分配的最小单位(是能拥有资源和独立运行的最小单位)
  • 线程是cpu调度的最小单位(线程是建立在进程的基础上的一次程序运行单位,一个进程中可以有多个线程)

tips

  • 不同进程之间也可以通信,不过代价较大
  • 现在,一般通用的叫法:单线程与多线程,都是指在一个进程内的单和多。(所以核心还是得属于一个进程才行)

浏览器是多进程的

理解了进程与线程了区别后,接下来对浏览器进行一定程度上的认识:(先看下简化理解)

  • 浏览器是多进程的
  • 浏览器之所以能够运行,是因为系统给它的进程分配了资源(cpu、内存)
  • 简单点理解,每打开一个Tab页,就相当于创建了一个独立的浏览器进程。

关于以上几点的验证,请再第一张图

图中打开了Chrome浏览器的多个标签页,然后可以在Chrome的任务管理器中看到有多个进程(分别是每一个Tab页面有一个独立的进程,以及一个主进程)。

感兴趣的可以自行尝试下,如果再多打开一个Tab页,进程正常会+1以上

注意:在这里浏览器应该也有自己的优化机制,有时候打开多个tab页后,可以在Chrome任务管理器中看到,有些进程被合并了(所以每一个Tab标签对应一个进程并不一定是绝对的)

浏览器都包含哪些进程?

知道了浏览器是多进程后,再来看看它到底包含哪些进程:(为了简化理解,仅列举主要进程)

  1. Browser进程:浏览器的主进程(负责协调、主控),只有一个。作用有
  • 负责浏览器界面显示,与用户交互。如前进,后退等
  • 负责各个页面的管理,创建和销毁其他进程
  • 将Renderer进程得到的内存中的Bitmap,绘制到用户界面上
  • 网络资源的管理,下载等
  • 第三方插件进程:每种类型的插件对应一个进程,仅当使用该插件时才创建
  • GPU进程:最多一个,用于3D绘制等
  • 浏览器渲染进程(浏览器内核)(Renderer进程,内部是多线程的):默认每个Tab页面一个进程,互不影响。主要作用为
    • 页面渲染,脚本执行,事件处理等

    强化记忆:在浏览器中打开一个网页相当于新起了一个进程(进程内有自己的多线程)

    当然,浏览器有时会将多个进程合并(譬如打开多个空白标签页后,会发现多个空白标签页被合并成了一个进程),如图

    另外,可以通过Chrome的更多工具 -> 任务管理器自行验证

    浏览器多进程的优势

    相比于单进程浏览器,多进程有如下优点:

    • 避免单个page crash影响整个浏览器
    • 避免第三方插件crash影响整个浏览器
    • 多进程充分利用多核优势
    • 方便使用沙盒模型隔离插件等进程,提高浏览器稳定性

    简单点理解:如果浏览器是单进程,那么某个Tab页崩溃了,就影响了整个浏览器,体验有多差;同理如果是单进程,插件崩溃了也会影响整个浏览器;而且多进程还有其它的诸多优势。。。

    当然,内存等资源消耗也会更大,有点空间换时间的意思。

    重点是浏览器内核(渲染进程)

    重点来了,我们可以看到,上面提到了这么多的进程,那么,对于普通的前端操作来说,最终要的是什么呢?答案是渲染进程

    可以这样理解,页面的渲染,JS的执行,事件的循环,都在这个进程内进行。接下来重点分析这个进程

    请牢记,浏览器的渲染进程是多线程的(这点如果不理解,请回头看进程和线程的区分

    终于到了线程这个概念了?,好亲切。那么接下来看看它都包含了哪些线程(列举一些主要常驻线程):

    1. GUI渲染线程
    • 负责渲染浏览器界面,解析HTML,CSS,构建DOM树和RenderObject树,布局和绘制等。
    • 当界面需要重绘(Repaint)或由于某种操作引发回流(reflow)时,该线程就会执行
    • 注意,GUI渲染线程与JS引擎线程是互斥的,当JS引擎执行时GUI线程会被挂起(相当于被冻结了),GUI更新会被保存在一个队列中等到JS引擎空闲时立即被执行。
  • JS引擎线程
    • 也称为JS内核,负责处理Javascript脚本程序。(例如V8引擎)
    • JS引擎线程负责解析Javascript脚本,运行代码。
    • JS引擎一直等待着任务队列中任务的到来,然后加以处理,一个Tab页(renderer进程)中无论什么时候都只有一个JS线程在运行JS程序
    • 同样注意,GUI渲染线程与JS引擎线程是互斥的,所以如果JS执行的时间过长,这样就会造成页面的渲染不连贯,导致页面渲染加载阻塞。
  • 事件触发线程
    • 归属于浏览器而不是JS引擎,用来控制事件循环(可以理解,JS引擎自己都忙不过来,需要浏览器另开线程协助)
    • 当JS引擎执行代码块如setTimeOut时(也可来自浏览器内核的其他线程,如鼠标点击、AJAX异步请求等),会将对应任务添加到事件线程中
    • 当对应的事件符合触发条件被触发时,该线程会把事件添加到待处理队列的队尾,等待JS引擎的处理
    • 注意,由于JS的单线程关系,所以这些待处理队列中的事件都得排队等待JS引擎处理(当JS引擎空闲时才会去执行)
  • 定时触发器线程
    • 传说中的setIntervalsetTimeout所在线程
    • 浏览器定时计数器并不是由JavaScript引擎计数的,(因为JavaScript引擎是单线程的, 如果处于阻塞线程状态就会影响记计时的准确)
    • 因此通过单独线程来计时并触发定时(计时完毕后,添加到事件队列中,等待JS引擎空闲后执行)
    • 注意,W3C在HTML标准中规定,规定要求setTimeout中低于4ms的时间间隔算为4ms。
  • 异步http请求线程
    • 在XMLHttpRequest在连接后是通过浏览器新开一个线程请求
    • 将检测到状态变更时,如果设置有回调函数,异步线程就产生状态变更事件,将这个回调再放入事件队列中。再由JavaScript引擎执行。

    看到这里,如果觉得累了,可以先休息下,这些概念需要被消化,毕竟后续将提到的事件循环机制就是基于事件触发线程的,所以如果仅仅是看某个碎片化知识,可能会有一种似懂非懂的感觉。要完成的梳理一遍才能快速沉淀,不易遗忘。放张图巩固下吧:

    再说一点,为什么JS引擎是单线程的?额,这个问题其实应该没有标准答案,譬如,可能仅仅是因为由于多线程的复杂性,譬如多线程操作一般要加锁,因此最初设计时选择了单线程。。。

    Browser进程和浏览器内核(Renderer进程)的通信过程

    看到这里,首先,应该对浏览器内的进程和线程都有一定理解了,那么接下来,再谈谈浏览器的Browser进程(控制进程)是如何和内核通信的,这点也理解后,就可以将这部分的知识串联起来,从头到尾有一个完整的概念。

    如果自己打开任务管理器,然后打开一个浏览器,就可以看到:任务管理器中出现了两个进程(一个是主控进程,一个则是打开Tab页的渲染进程),然后在这前提下,看下整个的过程:(简化了很多)

    • Browser进程收到用户请求,首先需要获取页面内容(譬如通过网络下载资源),随后将该任务通过RendererHost接口传递给Render进程
    • Renderer进程的Renderer接口收到消息,简单解释后,交给渲染线程,然后开始渲染
      • 渲染线程接收请求,加载网页并渲染网页,这其中可能需要Browser进程获取资源和需要GPU进程来帮助渲染
      • 当然可能会有JS线程操作DOM(这样可能会造成回流并重绘)
      • 最后Render进程将结果传递给Browser进程
    • Browser进程接收到结果并将结果绘制出来

    这里绘一张简单的图:(很简化)

    看完这一整套流程,应该对浏览器的运作有了一定理解了,这样有了知识架构的基础后,后续就方便往上填充内容。

    这块再往深处讲的话就涉及到浏览器内核源码解析了,不属于本文范围。

    如果这一块要深挖,建议去读一些浏览器内核源码解析文章,或者可以先看看参考下来源中的第一篇文章,写的不错

    梳理浏览器内核中线程之间的关系

    到了这里,已经对浏览器的运行有了一个整体的概念,接下来,先简单梳理一些概念

    GUI渲染线程与JS引擎线程互斥

    由于JavaScript是可操纵DOM的,如果在修改这些元素属性同时渲染界面(即JS线程和UI线程同时运行),那么渲染线程前后获得的元素数据就可能不一致了。

    因此为了防止渲染出现不可预期的结果,浏览器设置GUI渲染线程与JS引擎为互斥的关系,当JS引擎执行时GUI线程会被挂起,GUI更新则会被保存在一个队列中等到JS引擎线程空闲时立即被执行。

    JS阻塞页面加载

    从上述的互斥关系,可以推导出,JS如果执行时间过长就会阻塞页面。

    譬如,假设JS引擎正在进行巨量的计算,此时就算GUI有更新,也会被保存到队列中,等待JS引擎空闲后执行。然后,由于巨量计算,所以JS引擎很可能很久很久后才能空闲,自然会感觉到巨卡无比。

    所以,要尽量避免JS执行时间过长,这样就会造成页面的渲染不连贯,导致页面渲染加载阻塞的感觉。

    WebWorker,JS的多线程?

    前文中有提到JS引擎是单线程的,而且JS执行时间过长会阻塞页面,那么JS就真的对cpu密集型计算无能为力么?

    所以,后来HTML5中支持了Web Worker

    MDN的官方解释是:

    Web Worker为Web内容在后台线程中运行脚本提供了一种简单的方法。线程可以执行任务而不干扰用户界面

    一个worker是使用一个构造函数创建的一个对象(e.g. Worker()) 运行一个命名的JavaScript文件 

    这个文件包含将在工作线程中运行的代码; workers 运行在另一个全局上下文中,不同于当前的window

    因此,使用 window快捷方式获取当前全局的范围 (而不是self) 在一个 Worker 内将返回错误

    这样理解下:

    • 创建Worker时,JS引擎向浏览器申请开一个子线程(子线程是浏览器开的,完全受主线程控制,而且不能操作DOM)
    • JS引擎线程与worker线程间通过特定的方式通信(postMessage API,需要通过序列化对象来与线程交互特定的数据)

    所以,如果有非常耗时的工作,请单独开一个Worker线程,这样里面不管如何翻天覆地都不会影响JS引擎主线程,只待计算出结果后,将结果通信给主线程即可,perfect!

    而且注意下,JS引擎是单线程的,这一点的本质仍然未改变,Worker可以理解是浏览器给JS引擎开的外挂,专门用来解决那些大量计算问题。

    其它,关于Worker的详解就不是本文的范畴了,因此不再赘述。

    WebWorker与SharedWorker

    既然都到了这里,就再提一下SharedWorker(避免后续将这两个概念搞混)

    • WebWorker只属于某个页面,不会和其他页面的Render进程(浏览器内核进程)共享
      • 所以Chrome在Render进程中(每一个Tab页就是一个render进程)创建一个新的线程来运行Worker中的JavaScript程序。
    • SharedWorker是浏览器所有页面共享的,不能采用与Worker同样的方式实现,因为它不隶属于某个Render进程,可以为多个Render进程共享使用
      • 所以Chrome浏览器为SharedWorker单独创建一个进程来运行JavaScript程序,在浏览器中每个相同的JavaScript只存在一个SharedWorker进程,不管它被创建多少次。

    看到这里,应该就很容易明白了,本质上就是进程和线程的区别。SharedWorker由独立的进程管理,WebWorker只是属于render进程下的一个线程

    简单梳理下浏览器渲染流程

    本来是直接计划开始谈JS运行机制的,但想了想,既然上述都一直在谈浏览器,直接跳到JS可能再突兀,因此,中间再补充下浏览器的渲染流程(简单版本)

    为了简化理解,前期工作直接省略成:(要展开的或完全可以写另一篇超长文)

    - 浏览器输入url,浏览器主进程接管,开一个下载线程,
    然后进行 http请求(略去DNS查询,IP寻址等等操作),然后等待响应,获取内容,
    随后将内容通过RendererHost接口转交给Renderer进程

    - 浏览器渲染流程开始

    浏览器器内核拿到内容后,渲染大概可以划分成以下几个步骤:

    1. 解析html建立dom树
    2. 解析css构建render树(将CSS代码解析成树形的数据结构,然后结合DOM合并成render树)
    3. 布局render树(Layout/reflow),负责各元素尺寸、位置的计算
    4. 绘制render树(paint),绘制页面像素信息
    5. 浏览器会将各层的信息发送给GPU,GPU会将各层合成(composite),显示在屏幕上。

    所有详细步骤都已经略去,渲染完毕后就是load事件了,之后就是自己的JS逻辑处理了

    既然略去了一些详细的步骤,那么就提一些可能需要注意的细节把。

    这里重绘参考来源中的一张图:(参考来源第一篇)

    load事件与DOMContentLoaded事件的先后

    上面提到,渲染完毕后会触发load事件,那么你能分清楚load事件与DOMContentLoaded事件的先后么?

    很简单,知道它们的定义就可以了:

    • 当 DOMContentLoaded 事件触发时,仅当DOM加载完成,不包括样式表,图片。

    (譬如如果有async加载的脚本就不一定完成)

    • 当 onload 事件触发时,页面上所有的DOM,样式表,脚本,图片都已经加载完成了。

    (渲染完毕了)

    所以,顺序是:DOMContentLoaded -> load

    css加载是否会阻塞dom树渲染?

    这里说的是头部引入css的情况

    首先,我们都知道:css是由单独的下载线程异步下载的。

    然后再说下几个现象:

    • css加载不会阻塞DOM树解析(异步加载时DOM照常构建)
    • 但会阻塞render树渲染(渲染时需等css加载完毕,因为render树需要css信息)

    这可能也是浏览器的一种优化机制。

    因为你加载css的时候,可能会修改下面DOM节点的样式,如果css加载不阻塞render树渲染的话,那么当css加载完之后,render树可能又得重新重绘或者回流了,这就造成了一些没有必要的损耗。所以干脆就先把DOM树的结构先解析完,把可以做的工作做完,然后等你css加载完之后,在根据最终的样式来渲染render树,这种做法性能方面确实会比较好一点。

    普通图层和复合图层

    渲染步骤中就提到了composite概念。

    可以简单的这样理解,浏览器渲染的图层一般包含两大类:普通图层以及复合图层

    首先,普通文档流内可以理解为一个复合图层(这里称为默认复合层,里面不管添加多少元素,其实都是在同一个复合图层中)

    其次,absolute布局(fixed也一样),虽然可以脱离普通文档流,但它仍然属于默认复合层

    然后,可以通过硬件加速的方式,声明一个新的复合图层,它会单独分配资源(当然也会脱离普通文档流,这样一来,不管这个复合图层中怎么变化,也不会影响默认复合层里的回流重绘)

    可以简单理解下:GPU中,各个复合图层是单独绘制的,所以互不影响,这也是为什么某些场景硬件加速效果一级棒

    可以Chrome源码调试 -> More Tools -> Rendering -> Layer borders中看到,黄色的就是复合图层信息

    如下图。可以验证上述的说法

    如何变成复合图层(硬件加速)

    将该元素变成一个复合图层,就是传说中的硬件加速技术

    • 最常用的方式:translate3dtranslateZ
    • opacity属性/过渡动画(需要动画执行的过程中才会创建合成层,动画没有开始或结束后元素还会回到之前的状态)
    • will-chang属性(这个比较偏僻),一般配合opacity与translate使用(而且经测试,除了上述可以引发硬件加速的属性外,其它属性并不会变成复合层),

    作用是提前告诉浏览器要变化,这样浏览器会开始做一些优化工作(这个最好用完后就释放)

    • <video><iframe><canvas><webgl>等元素
    • 其它,譬如以前的flash插件

    absolute和硬件加速的区别

    可以看到,absolute虽然可以脱离普通文档流,但是无法脱离默认复合层。所以,就算absolute中信息改变时不会改变普通文档流中render树,但是,浏览器最终绘制时,是整个复合层绘制的,所以absolute中信息的改变,仍然会影响整个复合层的绘制。(浏览器会重绘它,如果复合层中内容多,absolute带来的绘制信息变化过大,资源消耗是非常严重的)

    而硬件加速直接就是在另一个复合层了(另起炉灶),所以它的信息改变不会影响默认复合层(当然了,内部肯定会影响属于自己的复合层),仅仅是引发最后的合成(输出视图)

    复合图层的作用?

    一般一个元素开启硬件加速后会变成复合图层,可以独立于普通文档流中,改动后可以避免整个页面重绘,提升性能

    但是尽量不要大量使用复合图层,否则由于资源消耗过度,页面反而会变的更卡

    硬件加速时请使用index

    使用硬件加速时,尽可能的使用index,防止浏览器默认给后续的元素创建复合层渲染

    具体的原理时这样的:webkit CSS3中,如果这个元素添加了硬件加速,并且index层级比较低,那么在这个元素的后面其它元素(层级比这个元素高的,或者相同的,并且releative或absolute属性相同的),会默认变为复合层渲染,如果处理不当会极大的影响性能

    简单点理解,其实可以认为是一个隐式合成的概念:如果a是一个复合图层,而且b在a上面,那么b也会被隐式转为一个复合图层,这点需要特别注意

    另外,这个问题可以在这个地址看到重现(原作者分析的挺到位的,直接上链接):

    http://web.jobbole.com/83575/

    从Event Loop谈JS的运行机制

    到此时,已经是属于浏览器页面初次渲染完毕后的事情,JS引擎的一些运行机制分析。

    注意,这里不谈可执行上下文VOscop chain等概念(这些完全可以整理成另一篇文章了),这里主要是结合Event Loop来谈JS代码是如何执行的。

    读这部分的前提是已经知道了JS引擎是单线程,而且这里会用到上文中的几个概念:(如果不是很理解,可以回头温习)

    • JS引擎线程
    • 事件触发线程
    • 定时触发器线程

    然后再理解一个概念:

    • JS分为同步任务和异步任务
    • 同步任务都在主线程上执行,形成一个执行栈
    • 主线程之外,事件触发线程管理着一个任务队列,只要异步任务有了运行结果,就在任务队列之中放置一个事件。
    • 一旦执行栈中的所有同步任务执行完毕(此时JS引擎空闲),系统就会读取任务队列,将可运行的异步任务添加到可执行栈中,开始执行。

    看图:

    看到这里,应该就可以理解了:为什么有时候setTimeout推入的事件不能准时执行?因为可能在它推入到事件列表时,主线程还不空闲,正在执行其它代码,所以自然有误差。

    事件循环机制进一步补充

    这里就直接引用一张图片来协助理解:(参考自Philip Roberts的演讲《Help, I'm stuck in an event-loop》)

    上图大致描述就是:

    • 主线程运行时会产生执行栈,

    栈中的代码调用某些api时,它们会在事件队列中添加各种事件(当满足触发条件后,如ajax请求完毕)

    • 而栈中的代码执行完毕,就会读取事件队列中的事件,去执行那些回调
    • 如此循环
    • 注意,总是要等待栈中的代码执行完毕后才会去读取事件队列中的事件

    单独说说定时器

    上述事件循环机制的核心是:JS引擎线程和事件触发线程

    但事件上,里面还有一些隐藏细节,譬如调用setTimeout后,是如何等待特定时间后才添加到事件队列中的?

    是JS引擎检测的么?当然不是了。它是由定时器线程控制(因为JS引擎自己都忙不过来,根本无暇分身)

    为什么要单独的定时器线程?因为JavaScript引擎是单线程的, 如果处于阻塞线程状态就会影响记计时的准确,因此很有必要单独开一个线程用来计时。

    什么时候会用到定时器线程?当使用setTimeoutsetInterval,它需要定时器线程计时,计时完成后就会将特定的事件推入事件队列中。

    譬如:

    setTimeout(function(){
        console.log('hello!');
    }, 1000);

    这段代码的作用是当1000毫秒计时完毕后(由定时器线程计时),将回调函数推入事件队列中,等待主线程执行

    setTimeout(function(){
        console.log('hello!');
    }, 0);

    console.log('begin');

    这段代码的效果是最快的时间内将回调函数推入事件队列中,等待主线程执行

    注意:

    • 执行结果是:先beginhello!
    • 虽然代码的本意是0毫秒后就推入事件队列,但是W3C在HTML标准中规定,规定要求setTimeout中低于4ms的时间间隔算为4ms。

    (不过也有一说是不同浏览器有不同的最小时间设定)

    • 就算不等待4ms,就算假设0毫秒就推入事件队列,也会先执行begin(因为只有可执行栈内空了后才会主动读取事件队列)

    setTimeout而不是setInterval

    用setTimeout模拟定期计时和直接用setInterval是有区别的。

    因为每次setTimeout计时到后就会去执行,然后执行一段时间后才会继续setTimeout,中间就多了误差(误差多少与代码执行时间有关)

    而setInterval则是每次都精确的隔一段时间推入一个事件(但是,事件的实际执行时间不一定就准确,还有可能是这个事件还没执行完毕,下一个事件就来了)

    而且setInterval有一些比较致命的问题就是:

    • 累计效应(上面提到的),如果setInterval代码在(setInterval)再次添加到队列之前还没有完成执行,

    就会导致定时器代码连续运行好几次,而之间没有间隔。就算正常间隔执行,多个setInterval的代码执行时间可能会比预期小(因为代码执行需要一定时间)

    • 譬如像iOS的webview,或者Safari等浏览器中都有一个特点,在滚动的时候是不执行JS的,如果使用了setInterval,会发现在滚动结束后会执行多次由于滚动不执行JS积攒回调,如果回调执行时间过长,就会非常容器造成卡顿问题和一些不可知的错误(这一块后续有补充,setInterval自带的优化,不会重复添加回调)
    • 而且把浏览器最小化显示等操作时,setInterval并不是不执行程序,

    它会把setInterval的回调函数放在队列中,等浏览器窗口再次打开时,一瞬间全部执行时

    所以,鉴于这么多但问题,目前一般认为的最佳方案是:用setTimeout模拟setInterval,或者特殊场合直接用requestAnimationFrame

    补充:JS高程中有提到,JS引擎会对setInterval进行优化,如果当前事件队列中有setInterval的回调,不会重复添加。不过,仍然是有很多问题。。。

    事件循环进阶:macrotask与microtask

    这段参考了参考来源中的第2篇文章(英文版的),(加了下自己的理解重新描述了下),强烈推荐有英文基础的同学直接观看原文,作者描述的很清晰,示例也很不错,如下:

    https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/

    上文中将JS事件循环机制梳理了一遍,在ES5的情况是够用了,但是在ES6盛行的现在,仍然会遇到一些问题,譬如下面这题:

    console.log('script start');

    setTimeout(function() {
        console.log('setTimeout');
    }, 0);

    Promise.resolve().then(function() {
        console.log('promise1');
    }).then(function() {
        console.log('promise2');
    });

    console.log('script end');

    嗯哼,它的正确执行顺序是这样子的:

    script start
    script end
    promise1
    promise2
    setTimeout

    为什么呢?因为Promise里有了一个一个新的概念:microtask

    或者,进一步,JS中分为两种任务类型:macrotaskmicrotask,在ECMAScript中,microtask称为jobs,macrotask可称为task

    它们的定义?区别?简单点可以按如下理解:

    • macrotask(又称之为宏任务),可以理解是每次执行栈执行的代码就是一个宏任务(包括每次从事件队列中获取一个事件回调并放到执行栈中执行)
      • 每一个task会从头到尾将这个任务执行完毕,不会执行其它
      • 浏览器为了能够使得JS内部task与DOM任务能够有序的执行,会在一个task执行结束后,在下一个 task 执行开始前,对页面进行重新渲染
    (`task->渲染->task->...`)
    • microtask(又称为微任务),可以理解是在当前 task 执行结束后立即执行的任务
      • 也就是说,在当前task任务后,下一个task之前,在渲染之前
      • 所以它的响应速度相比setTimeout(setTimeout是task)会更快,因为无需等渲染
      • 也就是说,在某一个macrotask执行完后,就会将在它执行期间产生的所有microtask都执行完毕(在渲染前)

    分别很么样的场景会形成macrotask和microtask呢?

    • macrotask:主代码块,setTimeout,setInterval等(可以看到,事件队列中的每一个事件都是一个macrotask)
    • microtask:Promise,process.nextTick等

    __补充:在node环境下,process.nextTick的优先级高于Promise__,也就是可以简单理解为:在宏任务结束后会先执行微任务队列中的nextTickQueue部分,然后才会执行微任务中的Promise部分。

    参考:https://segmentfault.com/q/1010000011914016

    再根据线程来理解下:

    • macrotask中的事件都是放在一个事件队列中的,而这个队列由事件触发线程维护
    • microtask中的所有微任务都是添加到微任务队列(Job Queues)中,等待当前macrotask执行完毕后执行,而这个队列由JS引擎线程维护

    (这点由自己理解+推测得出,因为它是在主线程下无缝执行的)

    所以,总结下运行机制:

    • 执行一个宏任务(栈中没有就从事件队列中获取)
    • 执行过程中如果遇到微任务,就将它添加到微任务的任务队列中
    • 宏任务执行完毕后,立即执行当前微任务队列中的所有微任务(依次执行)
    • 当前宏任务执行完毕,开始检查渲染,然后GUI线程接管渲染
    • 渲染完毕后,JS线程继续接管,开始下一个宏任务(从事件队列中获取)

    如图:

    另外,请注意下Promisepolyfill与官方版本的区别:

    • 官方版本中,是标准的microtask形式
    • polyfill,一般都是通过setTimeout模拟的,所以是macrotask形式
    • 请特别注意这两点区别

    注意,有一些浏览器执行结果不一样(因为它们可能把microtask当成macrotask来执行了),但是为了简单,这里不描述一些不标准的浏览器下的场景(但记住,有些浏览器可能并不标准)

    20180126补充:使用MutationObserver实现microtask

    MutationObserver可以用来实现microtask(它属于microtask,优先级小于Promise,一般是Promise不支持时才会这样做)

    它是HTML5中的新特性,作用是:监听一个DOM变动,当DOM对象树发生任何变动时,Mutation Observer会得到通知

    像以前的Vue源码中就是利用它来模拟nextTick的,具体原理是,创建一个TextNode并监听内容变化,然后要nextTick的时候去改一下这个节点的文本内容,如下:(Vue的源码,未修改)

    var counter = 1
    var observer = new MutationObserver(nextTickHandler)
    var textNode = document.createTextNode(String(counter))

    observer.observe(textNode, {
        characterDatatrue
    })
    timerFunc = () => {
        counter = (counter + 1) % 2
        textNode.data = String(counter)
    }

    对应Vue源码链接

    不过,现在的Vue(2.5+)的nextTick实现移除了MutationObserver的方式(据说是兼容性原因),取而代之的是使用MessageChannel(当然,默认情况仍然是Promise,不支持才兼容的)。

    MessageChannel属于宏任务,优先级是:MessageChannel->setTimeout,所以Vue(2.5+)内部的nextTick与2.4及之前的实现是不一样的,需要注意下。

    这里不展开,可以看下https://juejin.im/post/5a1af88f5188254a701ec230

    写在最后的话

    看到这里,不知道对JS的运行机制是不是更加理解了,从头到尾梳理,而不是就某一个碎片化知识应该是会更清晰的吧?

    同时,也应该注意到了JS根本就没有想象的那么简单,前端的知识也是无穷无尽,层出不穷的概念、N多易忘的知识点、各式各样的框架、底层原理方面也是可以无限的往下深挖,然后你就会发现,你知道的太少了。。。

    向下滑动查看

    参考资料

    • https://www.cnblogs.com/lhb25/p/how-browsers-work.html
    • https://jakearchibald.com/2015/tasks-microtasks-queues-and-schedules/
    • https://segmentfault.com/p/1210000012780980
    • http://blog.csdn.net/u013510838/article/details/55211033
    • http://blog.csdn.net/Steward2011/article/details/51319298
    • http://www.imweb.io/topic/58e3bfa845e5c13468f567d5
    • https://segmentfault.com/a/1190000008015671
    • https://juejin.im/post/5a4ed917f265da3e317df515
    • http://www.cnblogs.com/iovec/p/7904416.html
    • https://www.cnblogs.com/wyaocn/p/5761163.html
    • http://www.ruanyifeng.com/blog/2014/10/event-loop.html#comment-text
    推荐阅读  点击标题可跳转

    1、你不知道的 JS 高级方法

    2、JS 高级用法:像大神一样玩转 JavaScript

    3、Vue3+Pinia+Koa+Three.js 全栈电商项目总结复盘

    继续滑动看下一个
    大前端技术之路
    向上滑动看下一个

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存