南京大学贾叙东教授课题组和斯坦福大学鲍哲南教授课题组合作在自修复电容传感器研究方面取得进展
随着柔性可穿戴电子设备的发展,人们对材料的抗物理破坏性以及使用寿命等提出了更高的要求。具有自修复性的智能化器件有望解决这个问题。弹性聚合物基底材料是可拉伸器件的主要组成部分,设计并制备具有弹性自修复的基底材料是实现自修复可拉伸器件的重要手段。然而目前报道的可室温自修复的材料弹性性能较差,如何实现基体材料和导电体的良好自修复性能,并保证其组合体具有良好的拉伸性能成为了一大挑战。
最近,南京大学化学化工学院贾叙东教授课题组和斯坦福大学鲍哲南教授课题组在《先进材料》合作发表了题为“ Elastic Autonomous Self-healing Capacitive Sensor based on a Dynamic Dual Crosslinked Chemical System”的文章。南京大学张秋红副研究员、斯坦福大学牛思淼博士以及南京大学硕士王丽为本文的共同第一作者。
此前,张秋红副研究员与其他研究人员合作,利用四重氢键(UPy)作为动态交联中心引入聚氨酯体系,制备出可拉伸170,00%且可在室温修复的材料,但该类材料具有比较大的迟滞,弹性回复性能不理想(JACS,2018, 140, 5280–5289)。
为实现弹性和室温自修复兼具的目标,研究人员采用了结合能较强的姜黄素-铕离子动态金属配位键与结合能较弱的动态氢键复合的概念,在聚合物体系中形成了双重动态交联并且具有微相分离结构,最终实现了兼具弹性性能和高效自修复性能的弹性体材料。所制备材料的拉伸断裂强度可达1.8 MPa,断裂形变~900%;材料在拉伸500%之后,30 min内能恢复到原始状态。同时受损材料在25 °C修复48 h后可达到98%的修复效率。
研究人员利用该自修复材料与银片进行复合,制备出具有自修复能力的导体,并进一步将这些导体印刷到自修复弹性体的表层和底层,形成如上图所示的3×3阵列的九个小电容器。通过微处理器将每个点阵的信号收集处理并加以编程,最终实现密码解锁功能。为验证器件的自修复性,将触屏电容传感器切割并再次拼接后,即便在拉伸80%的条件下仍旧能够实现密码解锁功能。
本项研究得到了国家自然科学基金(21404056),国家留学基金(201606195042),以及中央高校科研业务费的资助。高性能高分子材料与技术教育部重点实验室以及配位化学国家重点实验室在本项目研究中给予了大力支持。此外,南京大学李承辉副教授和刘春根教授参与了本文的讨论并给出建议。
论文链接:
https://doi.org/10.1002/adma.201801435
来源:南京大学 化学化工学院
免责声明:部分资料来源于网络,转载的目的在于传递更多信息及分享,并不意味着赞同其观点或证实其真实性,也不构成其他建议。仅提供交流平台,不为其版权负责。如涉及侵权,请联系我们及时修改或删除。邮箱:info@polymer.cn
美国卡耐基梅隆大学研究人员设计出了一种可以在极端机械损伤条件下自我修复的新材料
四川大学吴锦荣副教授和哈佛大学合作设计出高性能自修复弹性体
《德国应用化学》四川大学高分子研究所张新星课题组:实时、多次自修复的柔性传感器用于人机交互系统
斯坦福大学鲍哲南教授、首尔大学Tae-Woo Lee教授、南开大学徐文涛教授联合研发出世界首条柔性人造触觉神经
斯坦福大学鲍哲南教授和美国退伍军人事务部Paige Fox合作研发出与生物体完全相容的可降解传感器
斯坦福大学鲍哲南教授团队:高密度超敏感的电子皮肤有望实现大规模量产
关注高分子科学技术 👉
长按二维码关注
诚邀投稿
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。