查看原文
其他

长春工业大学王世伟教授团队《JMCA》:电纺丝诱导发色团分子取向及其在锂离子电池中间隔膜中的应用

老酒高分子 高分子科技
2024-09-08
点击上方“蓝字” 一键订阅

通过静电纺丝技术制备纳米纤维材料是近十几年来世界材料科学技术领域重要的学术与技术活动之一。利用静电纺丝材料的纤维形貌,孔隙率均一可调,比表面积大等优势特点,使其可以广泛应用于生物医用、过滤及防护、催化、能源、光电、食品工程、化妆品等众多领域。发色团分子由于其自身的“D-π-A”结构,可以在活化状态下,通过高压电场的极化作用而发生一致取向,这种特性使其广泛应用于非线性光学膜材料。

长春工业大学材料科学高等研究院和化学工程学院的王世伟教授课题组首次将静电纺丝技术应用于发色团分子的取向,并将这种薄膜应用于锂离子电池中间隔膜中,结果显示由于取向的发色团的引入,显著增强了锂离子在薄膜中的传导率。如图1所示,典型的发生团分子DR1在PVDF粘稠的溶液中处于活化状态,结合静电纺丝过程中高压直流电场的作用,DR1分子发生一致取向,当溶剂挥发完全,在薄膜中,DR1分子的取向得以固定,得到了具有取向结构的PVDF/DR1静电纺丝纤维膜。如图2所示,通过测试薄膜锂离子电导率,可以发现,薄膜的锂离子电导率随着DR1分子含量的增加而增强,但随着其分子浓度的增加其相容性会有所下降,通过试验发现DR1在聚合物中2%重量比情况下薄膜电导率最高,而且静电纺丝电压越大,薄膜的锂离子电导率越大,最大值可以达到52 ms.cm-1, 而纯PVDF同样方法制备的薄膜同样方法测试,其锂离子电导率只有3.61 ms.cm-1


图1 a) 为发色团DR1和DO25的分子结构示意图;b) 静电纺丝示意图;c) 锂离子在薄膜中传输过程示意图;d) 电纺丝诱导发色团分子取向过程示意图。


图2 a) PVDF/DR1纺丝膜表面接触角随纺丝电压变化;b) PVDF/DR1纺丝膜电导率随DR1浓度的变化;c)和d)分别为 PVDF/DR1和PVDF/DO25纺丝膜电导率随纺丝电压的变化。


PVDF/DR1电纺丝薄膜锂离子传输增强的现象一定是DR1分子发生取向导致的,那么一个新的问题出现了:锂离子传输增强是由于DR1分子中分布不均匀的电子云结构(偶极结构)引起的,还是分子链两端连接的亲疏水官能团导致的呢?因此,接下来作者选用了与DR1分子结构相似的DO25重复上述试验,发现PVDF/DO25电纺丝薄膜的锂离子传导率并没有提高(如图2d所示), DO25与DR1的分子结构的区别就在于DO25分子结构的两端都是疏水基团,而DR1分子链结构的两端分别是亲水基团和疏水基团,可以推断,PVDF/DR1薄膜锂离子传输增强的机理应该是DR1分子取向,分子链两端的亲水和疏水官能团也随之翻转,亲水的羟基可以吸引锂离子,而疏水基团排斥锂离子,如图3所示,导致了锂离子在取向的DR1薄膜中,不断向前吸引和交替排斥,促使了它快速地传输到薄膜另一面。而没有亲水基团的DO25分子虽然也会发生取向,但确没有显著地增强锂离子电导率。


图3 PVDF/DR1静电纺丝膜锂离子传输增强机理示意图。


该工作中,作者通过薄膜表面接触角(图2a),拉曼光谱等表征手段证实了DR1分子在纺丝过程中取向的过程(图4)。采用扫描电镜表征了薄膜表面的纤维形貌。


图4 PVDF/DR1静电纺丝膜拉曼光谱图。


以上研究成果近日发表于Journal of Materials Chemistry A, 论文的第一作者是长春工业大学材料科学高等研究院和化工学院硕士研究生高立峰,通讯作者是长春工业大学化学与工程学院王世伟教授。汕头大学的段连峰教授在锂离子电池的制备与表征方面给予了很多帮助。


论文链接:

https://doi.org/10.1039/D0TA11838A


相关进展

中科院深圳先进院杨春雷研究员团队与东华大学刘天西教授团队合作发表耐高温聚酰亚胺锂电池隔膜研究进展综述

北师大李林&北化工周伟东团队Nano Letters: 复合功能隔膜原位转移助力锂金属电池

中国科大姚宏斌教授、倪勇教授和俞书宏教授团队:仿珍珠母层隔膜提升锂电池抗冲击性能

浙江大学徐志康教授课题组:稳定的聚多巴胺涂层用于锂离子电池隔膜改性的研究

中山大学吴丁财教授课题组《Nat. Commun. 》:利用功能化多孔高分子隔膜显著改善锂金属电池的大电流循环稳定性和安全性

高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

这里“阅读原文”,查看更多


继续滑动看下一个
高分子科技
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存