塔夫茨大学David L Kaplan教授、李春梅博士和吴俊奇研究员等《AM》综述: 纤维类生物高分子加工-可持续发展之路
21世纪正在面临严峻的环境危机和气候问题。其中,以化石燃料为原料的塑料问题日益严峻。目前 全世界每年生产超过3.5亿吨的塑料,这需要大约8%的化石燃料资源。[1] 对塑料需求的不断增长以及原材料成本的上涨,再加上由于废物管理不善和低效的回收系统,塑料在未来会面临更加严重的环境问题。合成塑料降解周期长达数十年或数百年是目前可持续性利用塑料制品的核心挑战。因此寻求可持续以及可生物降解的塑料替代品已成为一项紧迫的任务。
最近,塔夫茨大学生物工程系的David L Kaplan 教授,李春梅博士,以及博士后研究员吴俊奇等人就寻求可生物降解,纯天然生物高分子材料以替代合成塑料上做了深入的讨论和梳理。文中重点讨论了纤维类的生物高分子(纤维素,甲壳素,和蚕丝)在替代合成塑料上的优势。通过比较目前该类材料的加工方式,分析了溶剂类加工方式和纤维化加工方式(Fibrillated)在工业化和价格上的优势,同时也指出用热塑性加工方法加工的新的机会和可行性。该综述发表在Advanced Materials, Hall of Fame系列上。
该文章以碳循环着手,首先讨论了目前化石燃料为主的合成塑料的线性生命周期,指出了生物高分子材料在打破线性周期,实现可循环利用上的优势。
图a: 合成塑料和可降解生物纤维材料的碳循环周期
之后,作者就纤维素,蚕丝,甲壳素以及合成高分子聚合物在结构上做了比较,详细分析了生物高分子结构的层级复杂性。
图b: 传统塑料和生物高分子材料的结构和聚合形式
传统塑料制品通常使用热塑性加工,这种方法在工业上具有很大的优势。生物高分子材料结构的多级性导致了他们在使用传统热塑性加工上比合成聚合物更具挑战。 作者从生物高分子纤维材料结构共通性入手,解释了在实现热塑性加工上面临的挑战。合成塑料一般是由重复性单链构成的线性或者带支链的高分子结构。他们有分界明显的玻璃转换温度,熔点和热降解温度。这为热塑性加工提供了可能。生物高分子以氢键为基础形成的多层结构导致熔点和热降解温度通常难以区分,因此热塑性加工面临很大的挑战, 这也解释了为什么生物高分子材料目前仍以溶剂类加工方法为主。
图c: 合成塑料和高分子生物材料的热塑性和加工方式的比较
蚕丝材料的热塑性加工为高分子材料热塑性加工提供了先例。在该综述里, 作者回顾了该实验室用蚕丝无定形态纳米颗粒作为固体形式,通过加压加温形成具有极强机械性能的塑料材料的工作,分析了水分子在热塑性中起到的作用和对蚕丝β折叠结构的影响。该项工作证实了高分子生物材料热塑性加工的可能性,为实现更多生物高分子热塑性加工提供了模板。
图d: 蚕丝材料的热塑性加工
参考资料:
[1]https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/.
原文链接:
https://onlinelibrary.wiley.com/doi/10.1002/adma.202105196
点击下方“阅读原文”可下载该篇论文。
相关进展
美国华盛顿州立大学张锦文教授和刘湍研究员:生物基类玻璃高分子材料的研究进展
高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:info@polymer.cn
诚邀投稿
欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至info@polymer.cn,并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。
欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。
申请入群,请先加审核微信号PolymerChina (或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。
点
这里“阅读原文”,查看更多