国内首次!腾讯实现iDASH隐私计算比赛三连冠
iDASH国际隐私计算大赛
同时,iDASH多方安全计算赛道题目是安全记录关联,要求参赛队在两个数据库中安全的关联属于同一个病人的记录,主要挑战是病人记录信息可能有缺失和错误,且不能泄露任何病人信息。腾讯Angel PowerFL联队创新性地提出了基于机器学习的解决方案,在iDASH公开的数据上训练了逻辑回归模型,并基于电路隐私求交(Circuit-PSI)与混淆交换网络(Oblivious Switching Network)实现了全匿踪模型推理,获得了最高的准确率。腾讯提出的解决方案适用性广,可应用在金融、政务等场景中。
此外,iDASH可信计算赛道题目是根据细胞基因片段分布的相似性对细胞进行安全聚类,主要挑战是要在多个Intel SGX Enclave环境内实现分布式安全聚类解决方案。腾讯Angel PowerFL联队提出的基于消息队列(Message Queue)构建分布式解决方案是所有获奖队伍中唯一一个可以在多机上运行的方案,是真正的分布式解决方案,具有很好的扩展性,支持海量数据计算,可应用于生产环境下基于SGX的大规模分布式可信计算。
据派派了解,今年腾讯Angel PowerFL联队汇聚了来自腾讯大数据、腾讯安全、腾讯计费、腾讯云、腾讯广告AI,华中科技大学的密码学、隐私计算、大数据和机器学习领域的技术专家。
腾讯Angel PowerFL隐私计算团队也是国内较早开展隐私计算与联邦学习技术研究和应用的团队,在大数据、分布式计算、分布式机器学习、分布式消息中间件、多方安全计算、应用密码学等领域都有丰富的研发和应用经验,已发表近10篇隐私计算研究论文,提交了60多件隐私计算技术发明专利申请,有多个商用隐私计算和联邦学习的平台产品目前已经通过腾讯云对外开放。