查看原文
其他

厉害了!成理科研新突破!

收获满满的 成都理工大学
2024-08-22


成理人不负重任

为科研事业贡献着自己的力量
  近日,学校多个科研团队取得新突破!

跟随栗子君一起看看


👍️👍️👍️



本期目录


一、地球与行星科学学院邹灏教授课题组在国际地学顶级期刊Earth-Science Reviews发表研究成果
二、地灾国家重点实验室在自然指数期刊Geophysical Research Letters上发表密集颗粒流速度与颗粒温度分布规律研究成果
三、王宇杰教授研究团队揭示颗粒物质临界状态的物理起源






地球与行星科学学院邹灏教授课题组在国际地学顶级期刊Earth-Science Reviews发表研究成果


近日,我校地球与行星科学学院、油气藏地质及开发工程国家重点实验室固定研究人员邹灏教授以论文第一作者及通讯作者,在国际地球科学顶级期刊Earth-Science Reviews(影响因子12.1)上发表了题为“An oxygen isotope perspective on the break-up of the Rodinia supercontinent” 的学术论文。共同作者还包括中国科学院地质与地球物理研究所李献华院士、澳大利亚西澳大学Pirajno Franco教授和我校曹华文副研究员、博士生黄长成等。

新元古代Rodinia超大陆的聚合和裂解是重要的全球性事件,对新元古代海洋和大气圈氧化、多细胞生物大爆发等一系列地球系统剧变具有极其重要的影响。然而,Rodinia超大陆的重建模型和裂解动力学机制仍存在争议。

地球上具有显著低于正常地幔岩浆δ18O值(δ18O<5.3 ± 0.6‰)的岩浆岩是比较罕见的一种岩石,最有利于低δ18O岩浆发育的大地构造环境是裂谷构造带。因此,开展新元古代中期低δ18O岩浆岩研究对厘定Rodinia超大陆的重建模型和裂解动力学机制具有重要的指示意义。

本文收集了全球已发表的13,500个锆石的氧同位素数据(图1),为探讨Rodinia超大陆的重建模型和裂解动力学机制提供锆石氧同位素证据。

▲图1 全球锆石U-Pb年龄与δ18O值汇编


在对比了以华南为主的新元古代中期低δ18O岩浆的主微量元素组成以及锆石Hf、O同位素后,取得了以下创新性认识:


(1)广泛分布的新元古代中期低δ18O岩浆岩与上地壳物质的多次大规模重熔有关。


(2)Rodinia超大陆裂解时期的低δ18O岩浆主要发育于大陆裂谷伸展构造中,由浅层岩石在高温条件下和地表水发生氧同位素交换而形成。

(3)低δ18O岩浆岩带可作为重建超大陆模型的重要标志。随着地球上发现的低δ18O 岩浆岩的增多,将为Rodinia超大陆的重建模型提供更准确的限定证据。

该研究工作得到了国家自然科学基金(42272129)、四川省杰出青年科学基金(23NSFJQ0162)、成都理工大学珠峰科学研究计划联合资助。
Earth-Science Reviews 是地球科学领域公认的国际学界顶级期刊,主要报道地球科学领域具有全球尺度/视野的前沿性基础理论研究进展和综述。Earth-Science Reviews 最新的Impact Factor12.1,CiteScore20。



地灾国家重点实验室在自然指数期刊Geophysical Research Letters发表密集颗粒流速度与颗粒温度分布规律研究成果


成都理工大学地质灾害防治与地质环境保护国家重点实验室滑坡动力学团队,依托国家自然科学基金杰出青年基金、自然科学基金重大项目,和成都理工大学珠峰科学研究计划,联合美国麻州大学、中国地震局地质研究所、上海交通大学等单位,在密集颗粒流动力学领域取得重要进展。研究成果以“密集颗粒流速度分布及颗粒温度分布规律(Velocity Profile Geometries and Granular Temperature Distributions in Very Dense Granular Flows)”为题,于1月12日发表于Geophysical Research Letters (地球物理研究快讯)。


Geophysical Research Letters文章首页


地震断层带及滑坡滑带均由颗粒物质组成,揭示相对高压(100kPa-1MPa)条件下颗粒流微观动力学特征,对于理解地质剪切带的形成及其力学特性至关重要。成都理工大学滑坡动力学团队基于自主研发的透明环剪实验腔,首次实现了相对高压条件下颗粒流的直接观测,并通过高速摄像机与粒子图像测速法(PIV)成功获取密集剪切带内颗粒速度分布规律。


▲图1 a.成都理工大学ICL-2大型环剪仪;b和c.滑坡动力学团队自主研发的高压透明环剪实验腔体;d.基于透明实验腔实现对高压颗粒流的直接观测


实验观测表明密集颗粒流内的颗粒速度分布并非如传统简化模型一般呈线性分布,而是会在施加剪应力一侧形成约7-8个颗粒粒径厚的剪切带,且正应力和剪切速度对速度分布形态影响十分有限。在剪切带内,颗粒呈准线性分布,而在准静态区颗粒速度呈指数级衰减,剪切带与准静态区之间并没有泾渭分明的界限(图2c)。


研究通过理论推导证明这种准静态区内颗粒速度的指数级衰减很可能是由于颗粒物质的非局域行为(non-local physics)所引起的,并基于实验观测获取了相对高压条件下非局域特征长度。


▲图2 a.归一化的颗粒速度分布曲线;b.高压条件下非局域特征长度;c.延时摄影表明颗粒剪切带与准静态区之间没有泾渭分明的界限,颗粒速度呈指数级衰减


同时该研究与颗粒物理学学科交叉,引入了颗粒温度(非热力学温度)来分析密集颗粒流的微观动力学机理。颗粒温度在能量输入(施加剪应力)的一侧最高,并逐渐衰减直至颗粒流体锁固(Jamming)相变为颗粒固体。

这种颗粒动力学特性表明了密集颗粒流内复杂的能量传递与耗散机制,可能导致颗粒流的非均匀性(heterogeneity)与剪切局部化(shear localization)行为。上述研究对于预测滑坡及地震的启动具有重要的基础理论价值。

▲图3 a和b.基于颗粒运动学的颗粒温度分布;c和d.基于统计物理学的颗粒温度分布


滑坡动力学团队是四川省青年科技创新研究团队,团队带头人胡伟教授为本研究成果的通讯作者,李延副教授为论文第一作者。

Geophysical Research Letters(地球物理研究快讯)为地球科学类综合性期刊,“自然指数”(Nature index)期刊,以快速发表地学领域有广泛影响的创新性研究成果为特点,是国际地球科学领域最有影响力的学术期刊之一


Li, Y., Hu, W.*, Xu, Q., Huang, R., Chang, C. S., Chen, J., & Wang, Y. (2024). Velocity Profile Geometries and Granular Temperature Distributions in Very Dense Granular Flows. Geophysical Research Letters, 51(2), e2023GL104410.




王宇杰教授研究团队揭示颗粒物质临界状态的物理起源

近日,我校地质灾害防治与地质环境保护国家重点实验室和数理学院王宇杰教授团队与上海交通大学物理与天文学院以及华东师范大学物理与电子科学学院合作者合作,揭示了土力学中临界状态(critical state)的物理起源。该工作以“Origin of the critical state in sheared granular materials”为题近期发表在Nature Physics(《自然物理》)。该项成果标志着成都理工大学在颗粒物理以及土力学基础研究方向取得的重要突破。

颗粒物质一般指具有宏观大小的粒子汇集而成的离散体系,包括自然界中的沙石、土壤、浮冰、积雪,日常生活中的粮食、糖、盐,工业生产中的煤炭、矿石、建材,以及不少药品、化工品都属于颗粒物质的范畴。当没有外力作用时,颗粒物质会像固体一样保持静止,而在外部扰动下,它们又能够像液体一样发生流动。

在流动的稳定状态下,体系的宏观体积和剪切力将保持不变,人们将颗粒物质的这种特殊状态称为“临界状态”(critical state)。临界状态是土力学领域中的基本概念,是剑桥模型等常用经验本构关系的基础。然而,对临界状态的物理本质目前人们并没有充分的认识,导致现有的土力学研究缺少微观机制和基础,在应用上受到了限制。

在物理学家看来,颗粒物质属于无序/非晶体系大家族的范畴,特点是不具备晶体的周期性结构。而临界状态则类似于剪切下无序体系的稳定流动状态。将无序体系研究中获得的知识沿用到颗粒物质中来是理解临界状态的产生机制的最有效途径之一。

然而,颗粒系统本质上是非热平衡的,其宏观行为难以被传统的统计力学框架描述。此外,颗粒系统还具有因接触摩擦引起的额外接触层面物理现象,这在其他无序体系中是不存在的。因此,颗粒系统与热无序体系之间的联系至今没有定论。

要彻底理解临界状态的微观本质和建立宏微观联系,首先需要建立一个颗粒物质满足的统计力学框架。

上世纪90年代,剑桥大学S.F.Edwards教授及合作者提出了颗粒物质的统计力学系综框架,成为了相关领域长期以来的研究热点。简单来说,该框架将颗粒体系堆积所占的空间体积类比为平衡态中的能量(也被称作体积系综),进而推导出颗粒系统的温度、熵等一系列统计力学指标。

王宇杰研究团队和合作者在前期研究中开展了Edwards统计力学框架的验证工作,他们实验证实了Edwards体积系综框架适用于颗粒物质,给出了颗粒温度、熵等计算结果,并验证了颗粒温度满足热力学第零定律。他们还澄清了摩擦通过改变力学稳定堆积的态密度进而影响颗粒物质统计力学的机制(Phys. Rev. Lett., 127 018002(2021))。

同时他们还发现基于涨落耗散关系定义的有效温度与Edwards颗粒物质温度的一致性,证明了颗粒物质中存在一个普适的非平衡态统计物理框架和有效温度(Phys. Rev. Lett. 129 228004 (2022))。

基于这一颗粒体系满足的统计力学框架,王宇杰研究团队与合作者在最新发表的Nature Physics论文中揭示了土力学中一个关键概念即颗粒物质临界状态(critical state)的物理起源。

研究团队采用三种不同摩擦系数的颗粒开展了简单剪切实验。在足够大的应变下,这些体系都进入到了临界状态。

他们研究发现,剪切下的临界状态堆积与对应的颗粒随机松堆(random loose packing,RLP)具有几乎相同的统计力学性质(平均体积分数和微观体积分布)。在Edwards理论框架中,RLP对应于具有最大熵的特殊状态,在该状态下所有的微观状态都是等概率的。而要理解颗粒体系微观态的来源,需要从更广泛的无序体系堆积结构入手。

鉴于颗粒堆积结构非常类似于一般的硬球过冷液体,他们指出颗粒物质的堆积构型或微观态与硬球过冷液体结构存在对应关系。然而,颗粒物质与硬球过冷液体存在本质区别,颗粒体系在没有外界的扰动下都是静态的,对应的构型必须是力学稳定的,而哪些微观态可以满足力学稳定要求直接受颗粒间摩擦的大小决定。Edwards体积系综框架已经包含了力学稳定性假设,进一步考虑硬球过冷液体中不存在的颗粒间摩擦相互作用变得至关重要。

在本工作中,他们发现摩擦的大小会改变颗粒体系Edwards系综的态密度与熵(图1a)。具体表现摩擦会对态密度起到放大作用,使得同样体积分数下,大摩擦体系的微观状态更多。

由于在临界状态时,所有微观态是等概率遍历的,对所有的微观态进行等权平均会得到临界状态的体积分数。不同摩擦体系态密度的差异正是导致对应临界状态体积分数不同的直接原因。同时,这也解释了为什么摩擦可以有效拓宽体积分数的范围,高摩擦体系可以具有更低的体积分数。

该研究表明,在颗粒物质中无序结构和摩擦共同决定了微观态,在统计力学中都扮演了不可忽视的重要角色。过去人们忽略摩擦,将颗粒物质与无序体系完全等同,或者单纯认为摩擦接触构型完全决定态密度,不考虑无序结构构型熵(complexity)的做法都是不完整的。
图1  (a)三种不同摩擦的颗粒堆积中Edwards熵S与体积分数φ间的关系。插图:经过变量变换后,不同摩擦体系的Edwards熵与体积分数表现出统一的函数关系。(b-d)不同摩擦颗粒系统的能量景观示意图:(b)无摩擦颗粒堆积中只有能量景观低处的态能够维持力学稳定;(c)有限摩擦的颗粒体系,颗粒的表面粗糙形貌会在接触尺度上对能量景观进行修饰,使得更高位置的态能够力学稳定住;(d)当摩擦趋于无穷时,所有的阻塞堆积都满足力学稳定要求。

同时,他们研究发现尽管不同摩擦体系存在定量上的差异,在引入适当的状态变量变换后,它们的状态方程会表现出相同的形式。例如,通过变量变换把摩擦的影响剔除后,他们发现颗粒堆积的Edwards温度、熵、接触数等状态参量是体积分数的唯一函数,与摩擦系数的大小无关(图1a插图)。

这表明,不同摩擦的球形颗粒堆积系统理论上可以使用统一的框架进行处理。这个结果隐含了虽然颗粒体系的微观态由无序结构和摩擦共同决定,但它们之间仅仅是弱耦合关系。这本质上是由于两者具有明显的尺度分离(无序结构对应颗粒尺度,而摩擦接触对应表面尺度)。

图2  硬球体系的能量景观示意图。高温液体会在温度作用下进行热运动,在不同的构型间弛豫。快速压缩下,硬球液体构型中的近邻粒子会相互接触,从而处于每个构型盆地的底部,形成阻塞堆积。

进一步深究,通过该现象还可以近似得到的另一个推论是颗粒体系关键物理过程主要由无序构型或者能量景观的整体形貌决定的,而摩擦在其中仅起到放大作用。在硬球过冷液体等无序体系研究中,其微观态一般用能量景观或者自由能景观来表征(图2)。

在能量景观图像中,当温度降低时,硬球液体将进入玻璃能量景观,景观中的盆地对应于不同的硬球构型,但这些构型还不是力学稳定的。如果快速压缩硬球体系,它们将会被限制在盆地的底部并形成力学稳定的堆积结构。基于上述图像,该研究发现颗粒体系的临界状态可以被看作为处在能量景观刚形成时(体系刚出现固体刚性),具有Ton温度的硬球液体,此时所有的构型(盆地)都可以被遍历(图3)。

而处于随机密堆状态(random close packing, RCP)的颗粒体系位于能量景观的深处,对应于在玻璃转变温度Tc或动力学转变温度Td的硬球过冷液体,这时只有能量景观中比较低的构型可以被遍历。

对于不同的摩擦体系,由于所有的颗粒堆积构型都来源自于同样的高温硬球液体,不同摩擦的体系在粒子尺度上的构型相同,表现出普适的硬球行为。这也同时解释了归一化后的颗粒体系的Edwards熵与硬球过冷液体构型熵具有类似的随体积分数演化行为的现象。

然而,区别于硬球液体,颗粒体系需要满足力学稳定的要求,并受到摩擦的调控。摩擦本质上可以被看作为对能量景观的修饰,光滑颗粒体系对应的能量景观依然光滑,而粗糙颗粒体系的能量景观将出现许多“锯齿”。对于无摩擦颗粒体系而言,只有能量景观底部的构型满足力学稳定条件;高摩擦颗粒的表面粗糙使许多稀疏的堆积构型也能够满足力学稳定,从而可以出现对应能量景观高处的构型;当摩擦趋近于无穷大时,能量景观中的所有态都符合力学稳定的要求。

图3  (a)硬球液体的能量景观示意图:能量景观刚出现时,处于温度Ton的硬球液体能够遍历整个能量景观;玻璃化转变温度Tc或动力学转变温度Td的硬球液体位于能量景观的深处,无法遍历整个景观。(b)颗粒堆积的能量景观示意图:在RLP态,颗粒堆积的所有力学稳定态出现的概率相等;在RCP态,体系处于能量景观深处。(c, d)硬球液体构型熵3-5(c)以及颗粒堆积Edwards熵(d)与体积分数间的关系。

基于这种类比,研究团队解释了颗粒体系的剪切膨胀现象与临界状态出现的微观机制:对颗粒体系施加剪切等效于对过冷硬球液体进行加热,即对应于把玻璃化动力学转变温度Tc附近的过冷硬球液体升温,此时体系只能在能量景观中比较低的构型中进行弛豫,体积分数较大;而剪切使体系升温达到玻璃化动力学刚开始出现的温度Ton,此时能量景观中所有的构型态都能够被遍历,导致体积分数变小。


这个升温过程带来了体积的增加,因此颗粒体系中会出现剪切膨胀现象,而最终的稳态或者临界状态其实本质上就是能量景观起始温度Ton或者体系固体刚性刚好消失的硬球液体所对应的堆积状态。


如图4所示,研究发现即便对于同样的升温过程(TcTon),由于摩擦会影响态密度,大摩擦体系的体积分数的范围会更大,剪切下的体积变化更加显著。这解释了相比于无摩擦硬球,颗粒堆积的剪切膨胀效应更加明显的现象。摩擦主要起到的是大“热”膨胀系数效应。


图4 硬球液体与有摩擦颗粒堆积的对应关系。颗粒的堆积态可以映射到硬球液体,颗粒体系的剪切膨胀现象对应于硬球液体的升温过程。摩擦会影响态密度,从而决定剪切膨胀过程所带来的体积变化大小。

王宇杰研究团队及其合作者所看到的实验现象以及他们做出的物理解释,为构建颗粒物质和硬球液体之间的联系提供了一种新的理解,提供了将无序体系基础物理研究沿用到颗粒物质研究中的理论基础。这种基于物理图像的颗粒物质基础研究进展也会对包括滑坡、泥石流、地震在内的多种地质过程中的相变过程产生重要影响,为颗粒物质的实际工程提供理论基础。

论文通讯作者为王宇杰教授与华东师范大学物理与电子科学学院夏成杰副研究员,第一作者是上海交大物理与天文学院博士生邢义。该工作得到了国家自然科学基金No.11974240、No.11904102,上海交通大学科技创新基金No.21X010200829,上海市科委项目No.22YF1419900以及中国博士后科学基金项目No.2021M702151的支持。


来源丨地球与行星科学学院 地灾防治国家重点实验室
 数理学院
排版丨周彦安 曾丽霏 许静一 曾靖雯 钟海燕
编辑丨钟雨欣 罗琬淋
校审丨赵一蕾
责任编辑丨张爱艾

推荐阅读

▲一句话证明,你在成理上学!


《人民日报》报道,刘纤纤太棒了!
“镜”中成理,有“亿”点点美~




点亮“在看”,为成理加油点赞!
继续滑动看下一个
成都理工大学
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存