论文推荐|王亚菲:LEO卫星轨道预报精度分析
LEO卫星轨道预报精度分析
王亚菲1,2,3, 钟世明1,2
摘要:利用动力学拟合法,以HY-2A卫星为例分析不同拟合区间对预报不同弧长的轨道精度的影响。基于CNES提供的事后精密星历和采用非差简化动力学方法获得的厘米级快速轨道两种产品,进行卫星轨道预报。结果表明:采用24h和12h拟合区间分别预报12h轨道时,其3DRMS优于6dm;当预报24h轨道时,3DRMS优于1m。
关键词: 动力学拟合 Collocation积分 拟合区间 预报 快速定轨
Precision Analysis of LEO Satellite Orbit Prediction
WANG Yafei1,2,3, ZHONG Shiming1,2
Abstract: The accuracy of different fitting intervals on the predicted orbit of different arc lengths was analyzed by using the dynamic fitting method and taken HY-2A satellite as an example. According to two orbit products, one was the precise orbit obtained by CNES and the other was rapid orbit computed by adopting zero-different reduced dynamic method, obtaining the precise predicted orbit. By the results, we can get that the 3DRMS is near 6dm by using 12h or 24h fitting orbit to forecast 12h arc; the 3DRMS is near 1m when forecasting 24h arc.
Key words: dynamic fitting Collocation algorithm fitting interval prediction rapid orbit determination
基于低轨卫星的导航增强系统是目前国内外研究的热点[-]。从美国Iridium系统辅助GPS系统的研究成果来看,利用LEO卫星对导航系统进行性能增强是一种有效的手段[]。在此增强系统中,LEO卫星具有“源”“端”“中继”3种作用[]。当LEO卫星作为测距源时,与WAAS系统中GEO卫星类似,需要发布自身的广播星历,而广播星历的生成则需要进行轨道预报。因此,LEO卫星轨道的预报是该导航增强系统需要解决的重要问题之一。
目前,轨道预报方法主要有3种。第1种是分析法[-],即在分析获得卫星t时刻平均根数的基础上给出的一种轨道预报方法。该方法在空间环境监测和实时跟踪测量等对预报轨道精度要求不高的领域有着很好的应用效果。第2种是基于多项式拟合的方法,在不考虑卫星的受力情况下,利用多项式拟合卫星的精密轨道得到卫星的速度场,据此进行轨道预报。常用的有最小二乘曲线拟合法、切比雪夫多项式拟合法、拉格朗日多项式拟合法[-]。低轨卫星由于轨道较低,受力情况相对于中高轨卫星更为复杂,对于不涉及动力学模型的预报方法而言,只能进行短期(几分钟甚至更短)预报,预报精度为厘米甚至分米级[-]。第3种是基于动力学轨道拟合的方法[-],用已知的卫星位置坐标采用动力学方法拟合出初始轨道和动力学参数,在此基础上通过积分进行轨道外推。该方法与前两种方法相比,在达到分米级预报精度的前提下,能够实现更长弧长的轨道预报,满足低轨卫星增强导航卫星系统性能的应用[]。
本文以HY-2A卫星为例进行LEO卫星轨道预报研究,结合动力学拟合及Collocation方法[-],重点分析了拟合弧长及预报时长对轨道预报精度的影响。在此基础上,基于超快速星历产品实现HY-2A卫星高精度快速定轨的同时开展轨道预报研究,对进一步研究基于LEO卫星的导航增强系统具有很好的参考价值。
1 动力学拟合方法1.1 动力学拟合基本原理
设LEO卫星初始时刻t0的位置、速度以及动力学参数为(r0, ṙ0, p0),其中,r0、ṙ0分别为LEO卫星的位置及速度,p0则为在径向、沿迹以及法向上的一组经验参数(3个方向上各有一个常数项和两个周期项摄动参数[-])。考虑各种摄动力的影响,通过对卫星动力学方程积分可以得到卫星t时刻的位置、速度(r, ṙ),可表示如下
假设在LEO卫星精密星历中,对应t时刻的位置为rt,则采用动力学拟合的观测方程可以表示如下[]
式中,Φ(t, t0)=
假定在一段弧长[t1, tm]内,LEO卫星精密星历中的ti时刻卫星位置及速度为ri,则可以构建m维观测方程
式中
对以上方程组进行最小二乘估计,可以得到LEO卫星初始时刻t0的位置、速度以及动力学参数(r0, ṙ0, p0),通过积分可以进行LEO卫星的轨道预报。
1.2 定轨和预报采用的摄动力模型
LEO卫星由于轨道高度较低,其受力情况更为复杂。因此,在进行LEO卫星轨道确定及预报过程中需要考虑地球非球形引力、N体摄动、固体潮、海潮、大气阻力、太阳光压、地球辐射压及相对论效应等引起的摄动[-]。其中,在采用非差简化动力学法进行快速精密定轨时,大气阻力通过设置伪随机脉冲参数[]进行补偿(轨道预报过程,没有设置伪随机脉冲参数)。本文在数据处理过程中所采用的动力学模型如所示。
模型 | 描述 |
地球重力场模型 | EGM2008(120×120) |
行星星历 | DE405 |
光压模型 | ECOM模型 |
固体潮模型 | TIDE2000 |
海潮模型 | FES2004(50×50) |
章动模型 | IAU2000R06 |
半日极移模型 | IERS2010XY |
2 基于事后精密星历的轨道预报精度分析
为分析不同弧长轨道数据的拟合精度以及不同的拟合区间长度对不同弧长的预报影响,本文采用法国国家空间中心(CNES)提供的HY-2A卫星上SLR、DORIS和星载GPS数据联合定轨[-]生成的精密星历进行方法测试(径向误差在1 cm左右,沿迹和法向上的误差为2~3 cm,采样间隔60 s)。利用Bernese5.2软件对2014年没有轨道机动情况下的DOY 60-128共计65 d(DOY 73和DOY 106出现轨道机动,暂不处理)的精密星历进行动力学拟合及预报,并统计了轨道拟合及预报结果与参考轨道的位置偏差,预报方案如所示。
年积日 | 弧长/h | 拟合区间长度 | 预报弧长长度 |
N=60, 61, …, 128 | 2 | DOY N天的22-24时 | 预报4 h:从DOY N+1天的0-4时 预报8 h:从DOY N+1天的0-8时 预报12 h:从DOY N+1天的0-12时 预报24 h:从DOY N+1天的0-24时 |
4 | DOY N天的20-24时 | ||
6 | DOY N天的18-24时 | ||
8 | DOY N天的16-24时 | ||
12 | DOY N天的12-24时 | ||
24 | DOY N天的0-24时 |
2.1 卫星轨道拟合精度分析
根据以上提出的拟合方案,采用动力学拟合法对HY-2A卫星进行相应的轨道拟合与预报数据处理,其不同拟合弧长的拟合精度(3DRMS值)如所示。结果显示:随着拟合弧长的增加,拟合残差逐渐增大。其中,24 h弧长拟合3DRMS值小于8 cm,2 h弧长拟合3DRMS在毫米级水平。
2.2 卫星轨道预报结果分析
根据2.1节拟合得到相关的动力学参数进行数据处理,分别基于不同拟合区间预报2 h、4 h、8 h、12 h和24 h弧长的HY-2A卫星轨道。在预报过程中采用与轨道拟合时相同的动力学模型及参数,积分步长为3 min,式(4)中多项式阶数q=10。-统计了不同拟合区间分别预报2 h、4 h、8 h、12 h和24 h弧长的轨道预报精度(3DRMS),为2014年DOY 64的不同拟合区间预报24 h弧长在R(径向)、S(沿迹方向)、W(法向)3个方向上的差值时序图。
(1) -表明拟合区间对轨道的预报精度影响较大。当预报2 h弧长时,选择2 h的拟合区间长度较为适宜,其3DRMS可达厘米级;当预报4 h、8 h、12 h和24 h弧长时,采用12 h或者24 h的拟合区间长度进行外推,其预报结果相对比较稳定,精度较好,24 h弧长预报轨道的3DRMS达到分米级,满足高精度应用需求。
(2) 表明当拟合区间长度一定时,随着预报弧长的增加,相比较于R方向及W方向,S方向的预报精度最差,下降最快[-]。
3 基于超快速精密定轨结果的轨道预报精度分析
由于CNES发布的HY-2A卫星星历是一种事后精密轨道,存在较大时间延迟,在此基础上的轨道预报在实际应用中存在一定限制。因此,需要对HY-2A卫星实现快速精密定轨,以便获得较小延迟下的HY-2A精密轨道。本文采用中科院测量与地球物理研究所(WHIGG)iGMAS数据分析中心提供的GPS超快速产品(时延3~9个小时,星历采样率为15 min,钟差采样率为30 s)对HY-2A卫星进行快速精密定轨及预报。
统计的是基于2015年DOY 209-342的快速星历获得HY-2A卫星非差简化动力学轨道与CNES提供的参考轨道在R、S、W和三维位置比较的RMS。从中可以得到,快速精密轨道与参考轨道的差值在径向、沿迹和法向上的平均值分别为1.41 cm、3.30 cm、2.29 cm,3DRMS的平均值为4.27 cm,与文献[]中结论相一致。
根据2.2节得到的初步结论,本节分别采用HY-2A卫星12 h和24 h弧长的快速定轨结果进行动力学拟合并预报轨道。表示的是两种不同拟合弧长(12 h和24 h)分别进行轨道预报得到2015年DOY 330-343轨道结果与参考轨道的三维位置误差。从图中可以得到,24 h和12 h弧长分别预报12 h轨道时,其3DRMS优于6 dm;当预报24 h轨道时,3DRMS优于1 m。
4 结论
本文基于动力学拟合法以HY-2A卫星为例开展了轨道预报研究,分析了不同拟合区间长度对不同弧长预报精度的影响。在此基础上,提出利用GPS超快速产品在实现快速精密定轨的同时,通过采用动力学拟合法可以获得较高精度的预报轨道。研究结果表明:
(1)对于要求预报轨道超过2 h弧长的应用而言,建议采用12 h或者24 h拟合区间进行轨道预报,其预报精度相对较为稳定。
(2)利用WHIGG数据分析中心的超快速产品在实现LEO卫星快速精密定轨后,采用动力学拟合方法进行轨道预报,可以获得与采用事后精密星历进行轨道预报接近的精度,预报12 h弧长轨道时,3DRMS优于6 dm;预报24 h弧长轨道时,3DRMS优于1 m,可以满足较高精度的应用需求。
(3) LEO卫星轨道预报精度很大程度上取决于S方向,且随着预报弧长增加,其预报精度下降很快。因此提高S方向的预报精度,有利于提高低轨卫星的预报精度。
致谢: 感谢中国科学院测量与地球物理研究所iGMAS分析中心提供的GPS超快速产品。
, , ,
1. 中国科学院测量与地球物理研究所, 湖北 武汉 430077 ;
2. 大地测量与地球动力学国家重点实验室, 湖北 武汉 430077 ;
3. 中国科学院大学, 北京 100049
收稿日期:2016-01-28; 修回日期:2016-06-17
基金项目:国家自然科学基金(41474029;41574015);大地测量与地球动力学国家重点实验室自主项目(SKLGED2013-4-2-Z)
第一作者简介:王亚菲(1989-), 女, 硕士, 研究方向为GNSS高精度数据处理.
E-mail:
通信作者: 钟世明
E-mail:
更多精彩内容:
论文推荐|马志伟:利用Abel-Poisson径向基函数模型化局部重力场
论文推荐|陈良:北斗/GPS实时精密卫星钟差融合解算模型及精度分析
论文推荐|姚宜斌:基于DREAMNET的GPS/BDS/GLONASS多系统网络RTK定位性能分析
论文推荐|宁津生院士:基于卫星加速度恢复地球重力场的去相关滤波法
论文推荐|申二华:圆扫描式机载激光测深系统检校模型及仿真分析