COLT'18 最佳论文 2018年,马腾宇与Yuanzhi Li 、Hongyang Zhang三人合作的论文《Algorithmic Regularization in Over-parameterized Matrix Sensing and Neural Networks with Quadratic Activations》发表在COLT上,并获得了最佳论文奖。而这篇论文与NIPS‘16的最佳学生论文类似,从开始做到投稿,前后仍然只用两个月的时间。在这篇主题为“正则化”的工作中,马腾宇他们直接follow了之前的一篇工作,但那先前的工作只能解决一个特殊问题,而马腾宇意识到如果沿着他们的思路做,可能会变得越来越复杂。意识到这一点本身非常重要。他说:“做科研,很重要的一点是去理解其他技术为什么本质上不可行。很多时候,科研之所以思路比较慢,原因在于你有许多选择,你不知道哪个选择是好的,也不知道哪个选择是坏的。这很糟糕。一旦你知道哪个选择是坏的,剩下可选的好的就不多了。所以做科研,很重要的一步是排除是坏的选择;其次是,要知道它为什么是坏的,这也比较重要,因为你如果不知道它为什么是坏的话,就很难把它变成好的。 一个想法,如果你能知道它行不通的根本原因,一般情况下就不会很难通过针对性地修改这个想法得到一个更好的方案。所以我们这项工作模式上就是:我们发现一个想法没有效果,然后理解了这个想法失败的的原因,修正并提出一个新的想法;如果新的想法还解决不了问题,就找到问题,修正,循环往复,就是这样。”