查看原文
其他

HashMap 夺命 14 问,我被问怕了!你能坚持到几回合?

Java精选 2022-08-09

点击上方“Java精选”,选择“设为星标”

别问别人为什么,多问自己凭什么!

下方有惊喜留言必回,有问必答!

每一天进步一点点,是成功的开始...
1. HashMap的底层数据结构是什么?
在JDK1.7中和JDK1.8中有所区别:
在JDK1.7中,由”数组+链表“组成,数组是HashMap的主体,链表则是主要为了解决哈希冲突而存在的。
在JDK1.8中,有“数组+链表+红黑树”组成。当链表过长,则会严重影响HashMap的性能,红黑树搜索时间复杂度是O(logn),而链表是O(n)。因此,JDK1.8对数据结构做了进一步的优化,引入了红黑树,链表和红黑树在达到一定条件会进行转换:
  • 当链表超过8且数组长度(数据总量)超过64才会转为红黑树
  • 将链表转换成红黑树前会判断,如果当前数组的长度小于64,那么会选择先进行数组扩容,而不是转换为红黑树,以减少搜索时间。
2. 说一下HashMap的特点
  • hashmap存取是无序的
  • 键和值位置都可以是null,但是键位置只能是一个null
  • 键位置是唯一的,底层的数据结构是控制键的
  • jdk1.8前数据结构是:链表+数组jdk1.8之后是:数组+链表+红黑树
  • 阈值(边界值)>8并且数组长度大于64,才将链表转换成红黑树,变成红黑树的目的是提高搜索速度,高效查询
3. 解决hash冲突的办法有哪些?HashMap用的哪种?
解决Hash冲突方法有:开放定址法、再哈希法、链地址法(HashMap中常见的拉链法)、简历公共溢出区。HashMap中采用的是链地址法。
  • 开放定址法也称为再散列法,基本思想就是,如果p=H(key)出现冲突时,则以p为基础,再次hash,p1=H(p),如果p1再次出现冲突,则以p1为基础,以此类推,直到找到一个不冲突的哈希地址pi。因此开放定址法所需要的hash表的长度要大于等于所需要存放的元素,而且因为存在再次hash,所以只能在删除的节点上做标记,而不能真正删除节点
  • 再哈希法(双重散列,多重散列),提供多个不同的hash函数,R1=H1(key1)发生冲突时,再计算R2=H2(key1),直到没有冲突为止。这样做虽然不易产生堆集,但增加了计算的时间。
  • 链地址法(拉链法),将哈希值相同的元素构成一个同义词的单链表,并将单链表的头指针存放在哈希表的第i个单元中,查找、插入和删除主要在同义词链表中进行,链表法适用于经常进行插入和删除的情况。
  • 建立公共溢出区,将哈希表分为公共表和溢出表,当溢出发生时,将所有溢出数据统一放到溢出区
注意开放定址法和再哈希法的区别是
  • 开放定址法只能使用同一种hash函数进行再次hash,再哈希法可以调用多种不同的hash函数进行再次hash
4. 为什么要在数组长度大于64之后,链表才会进化为红黑树
在数组比较小时如果出现红黑树结构,反而会降低效率,而红黑树需要进行左旋右旋,变色,这些操作来保持平衡,同时数组长度小于64时,搜索时间相对要快些,总之是为了加快搜索速度,提高性能
JDK1.8以前HashMap的实现是数组+链表,即使哈希函数取得再好,也很难达到元素百分百均匀分布。当HashMap中有大量的元素都存放在同一个桶中时,这个桶下有一条长长的链表,此时HashMap就相当于单链表,假如单链表有n个元素,遍历的时间复杂度就从O(1)退化成O(n),完全失去了它的优势,为了解决此种情况,JDK1.8中引入了红黑树(查找的时间复杂度为O(logn))来优化这种问题
5. 为什么加载因子设置为0.75,初始化临界值是12?
HashMap中的threshold是HashMap所能容纳键值对的最大值。计算公式为length*LoadFactory。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数也越大
loadFactory越趋近于1,那么数组中存放的数据(entry也就越来越多),数据也就越密集,也就会有更多的链表长度处于更长的数值,我们的查询效率就会越低,当我们添加数据,产生hash冲突的概率也会更高
默认的loadFactory是0.75,loadFactory越小,越趋近于0,数组中个存放的数据(entry)也就越少,表现得更加稀疏
0.75是对空间和时间效率的一种平衡选择
如果负载因子小一些比如是0.4,那么初始长度16*0.4=6,数组占满6个空间就进行扩容,很多空间可能元素很少甚至没有元素,会造成大量的空间被浪费
如果负载因子大一些比如是0.9,这样会导致扩容之前查找元素的效率非常低
loadfactory设置为0.75是经过多重计算检验得到的可靠值,可以最大程度的减少rehash的次数,避免过多的性能消耗
6. 哈希表底层采用何种算法计算hash值?还有哪些算法可以计算出hash值?
hashCode方法是Object中的方法,所有的类都可以对其进行使用,首先底层通过调用hashCode方法生成初始hash值h1,然后将h1无符号右移16位得到h2,之后将h1与h2进行按位异或(^)运算得到最终hash值h3,之后将h3与(length-1)进行按位与(&)运算得到hash表索引
其他可以计算出hash值的算法有
  • 平方取中法
  • 取余数
  • 伪随机数法
7. 当两个对象的hashCode相等时会怎样
hashCode相等产生hash碰撞,hashCode相等会调用equals方法比较内容是否相等,内容如果相等则会进行覆盖,内容如果不等则会连接到链表后方,链表长度超过8且数组长度超过64,会转变成红黑树节点
8. 何时发生哈希碰撞和什么是哈希碰撞,如何解决哈希碰撞
只要两个元素的key计算的hash码值相同就会发生hash碰撞,jdk8之前使用链表解决哈希碰撞,jdk8之后使用链表+红黑树解决哈希碰撞
9. HashMap的put方法流程
以jdk8为例,简要流程如下:
  • 首先根据key的值计算hash值,找到该元素在数组中存储的下标
  • 如果数组是空的,则调用resize进行初始化;
  • 如果没有哈希冲突直接放在对应的数组下标里
  • 如果冲突了,且key已经存在,就覆盖掉value
  • 如果冲突后是链表结构,就判断该链表是否大于8,如果大于8并且数组容量小于64,就进行扩容;如果链表节点数量大于8并且数组的容量大于64,则将这个结构转换成红黑树;否则,链表插入键值对,若key存在,就覆盖掉value
  • 如果冲突后,发现该节点是红黑树,就将这个节点挂在树上
10. HashMap的扩容方式
HashMap在容量超过负载因子所定义的容量之后,就会扩容。java里的数组是无法自己扩容的,将HashMap的大小扩大为原来数组的两倍
我们来看jdk1.8扩容的源码
final Node<K,V>[] resize() { //oldTab:引用扩容前的哈希表 Node<K,V>[] oldTab = table; //oldCap:表示扩容前的table数组的长度 int oldCap = (oldTab == null) ? 0 : oldTab.length; //获得旧哈希表的扩容阈值 int oldThr = threshold; //newCap:扩容之后table数组大小 //newThr:扩容之后下次触发扩容的条件 int newCap, newThr = 0; //条件成立说明hashMap中的散列表已经初始化过了,是一次正常扩容 if (oldCap > 0) { //判断旧的容量是否大于等于最大容量,如果是,则无法扩容,并且设置扩容条件为int最大值, //这种情况属于非常少数的情况 if (oldCap >= MAXIMUM_CAPACITY) { threshold = Integer.MAX_VALUE; return oldTab; }//设置newCap新容量为oldCap旧容量的二倍(<<1),并且<最大容量,而且>=16,则新阈值等于旧阈值的两倍 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && oldCap >= DEFAULT_INITIAL_CAPACITY) newThr = oldThr << 1; // double threshold } //如果oldCap=0并且边界值大于0,说明散列表是null,但此时oldThr>0 //说明此时hashMap的创建是通过指定的构造方法创建的,新容量直接等于阈值 //1.new HashMap(intitCap,loadFactor) //2.new HashMap(initCap) //3.new HashMap(map) else if (oldThr > 0) // initial capacity was placed in threshold newCap = oldThr; //这种情况下oldThr=0;oldCap=0,说明没经过初始化,创建hashMap //的时候是通过new HashMap()的方式创建的 else { // zero initial threshold signifies using defaults newCap = DEFAULT_INITIAL_CAPACITY; newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); } //newThr为0时,通过newCap和loadFactor计算出一个newThr if (newThr == 0) { //容量*0.75 float ft = (float)newCap * loadFactor; newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ? (int)ft : Integer.MAX_VALUE); } threshold = newThr; @SuppressWarnings({"rawtypes","unchecked"}) //根据上面计算出的结果创建一个更长更大的数组 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap]; //将table指向新创建的数组 table = newTab; //本次扩容之前table不为null if (oldTab != null) { //对数组中的元素进行遍历 for (int j = 0; j < oldCap; ++j) { //设置e为当前node节点 Node<K,V> e; //当前桶位数据不为空,但不能知道里面是单个元素,还是链表或红黑树, //e = oldTab[j],先用e记录下当前元素 if ((e = oldTab[j]) != null) { //将老数组j桶位置为空,方便回收 oldTab[j] = null; //如果e节点不存在下一个节点,说明e是单个元素,则直接放置在新数组的桶位 if (e.next == null) newTab[e.hash & (newCap - 1)] = e; //如果e是树节点,证明该节点处于红黑树中 else if (e instanceof TreeNode) ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); //e为链表节点,则对链表进行遍历 else { // preserve order //低位链表:存放在扩容之后的数组的下标位置,与当前数组下标位置一致 //loHead:低位链表头节点 //loTail低位链表尾节点 Node<K,V> loHead = null, loTail = null; //高位链表,存放扩容之后的数组的下标位置,=原索引+扩容之前数组容量 //hiHead:高位链表头节点 //hiTail:高位链表尾节点 Node<K,V> hiHead = null, hiTail = null; Node<K,V> next; do { next = e.next; //oldCap为16:10000,与e.hsah做&运算可以得到高位为1还是0 //高位为0,放在低位链表 if ((e.hash & oldCap) == 0) { if (loTail == null) //loHead指向e loHead = e; else loTail.next = e; loTail = e; } //高位为1,放在高位链表 else { if (hiTail == null) hiHead = e; else hiTail.next = e; hiTail = e; } } while ((e = next) != null); //低位链表已成,将头节点loHead指向在原位 if (loTail != null) { loTail.next = null; newTab[j] = loHead; } //高位链表已成,将头节点指向新索引 if (hiTail != null) { hiTail.next = null; newTab[j + oldCap] = hiHead; } } } } } return newTab; }
扩容之后原位置的节点只有两种调整
  • 保持原位置不动(新bit位为0时)
  • 散列原索引+扩容大小的位置去(新bit位为1时)
扩容之后元素的散列设置的非常巧妙,节省了计算hash值的时间,我们来看一 下具体的实现
当数组长度从16到32,其实只是多了一个bit位的运算,我们只需要在意那个多出来的bit为是0还是1,是0的话索引不变,是1的话索引变为当前索引值+扩容的长度,比如5变成5+16=21
这样的扩容方式不仅节省了重新计算hash的时间,而且保证了当前桶中的元素总数一定小于等于原来桶中的元素数量,避免了更严重的hash冲突,均匀的把之前冲突的节点分散到新的桶中去
11. 一般用什么作为HashMap的key?
一般用Integer、String这种不可变类当HashMap当key
  • 因为String是不可变的,当创建字符串时,它的hashcode被缓存下来,不需要再次计算,相对于其他对象更快
  • 因为获取对象的时候要用到equals()和hashCode()方法,那么键对象正确的重写这两个方法是非常重要的,这些类很规范的重写了hashCode()以及equals()方法
12. 为什么Map桶中节点个数超过8才转为红黑树?
8作为阈值作为HashMap的成员变量,在源码的注释中并没有说明阈值为什么是8
在HashMap中有这样一段注释说明,我们继续看
* Because TreeNodes are about twice the size of regular nodes, we * use them only when bins contain enough nodes to warrant use * (see TREEIFY_THRESHOLD). And when they become too small (due to * removal or resizing) they are converted back to plain bins. In * usages with well-distributed user hashCodes, tree bins are * rarely used. Ideally, under random hashCodes, the frequency of * nodes in bins follows a Poisson distribution * (http://en.wikipedia.org/wiki/Poisson_distribution) with a * parameter of about 0.5 on average for the default resizing * threshold of 0.75, although with a large variance because of * resizing granularity. Ignoring variance, the expected * occurrences of list size k are (exp(-0.5) * pow(0.5, k) / * factorial(k)).
翻译
因为树节点的大小大约是普通节点的两倍,所以我们只在箱子包含足够的节点时才使用树节点(参见TREEIFY_THRESHOLD)。当他们边的太小(由于删除或调整大小)时,就会被转换回普通的桶,在使用分布良好的hashcode时,很少使用树箱。理想情况下,在随机哈希码下,箱子中节点的频率服从泊松分布第一个值是:
* 0: 0.60653066 * 1: 0.30326533 * 2: 0.07581633 * 3: 0.01263606 * 4: 0.00157952 * 5: 0.00015795 * 6: 0.00001316 * 7: 0.00000094 * 8: 0.00000006 * more: less than 1 in ten million
树节点占用空间是普通Node的两倍,如果链表节点不够多却转换成红黑树,无疑会耗费大量的空间资源,并且在随机hash算法下的所有bin节点分布频率遵从泊松分布,链表长度达到8的概率只有0.00000006,几乎是不可能事件,所以8的计算是经过重重科学考量的
  • 从平均查找长度来看,红黑树的平均查找长度是logn,如果长度为8,则logn=3,而链表的平均查找长度为n/4,长度为8时,n/2=4,所以阈值8能大大提高搜索速度
  • 当长度为6时红黑树退化为链表是因为logn=log6约等于2.6,而n/2=6/2=3,两者相差不大,而红黑树节点占用更多的内存空间,所以此时转换最为友好
13. HashMap为什么线程不安全?
  • 多线程下扩容死循环。JDK1.7中的HashMap使用头插法插入元素,在多线程的环境下,扩容的时候有可能导致环形链表的出现,形成死循环。因此JDK1.8使用尾插法插入元素,在扩容时会保持链表元素原本的顺序,不会出现环形链表的问题
  • 多线程的put可能导致元素的丢失。多线程同时执行put操作,如果计算出来的索引位置是相同的,那会造成前一个key被后一个key覆盖,从而导致元素的丢失。此问题在JDK1.7和JDK1.8中都存在
  • put和get并发时,可能导致get为null。线程1执行put时,因为元素个数超出threshold而导致rehash,线程2此时执行get,有可能导致这个问题,此问题在JDK1.7和JDK1.8中都存在
14. 计算hash值时为什么要让低16bit和高16bit进行异或处理
  • 我们计算索引需要将hashCode值与length-1进行按位与运算,如果数组长度很小,比如16,这样的值和hashCode做异或实际上只有hashCode值的后4位在进行运算,hash值是一个随机值,而如果产生的hashCode值高位变化很大,而低位变化很小,那么有很大概率造成哈希冲突,所以我们为了使元素更好的散列,将hash值的高位也利用起来\
举个例子
如果我们不对hashCode进行按位异或,直接将hash和length-1进行按位与运算就有可能出现以下的情况
如果下一次生成的hashCode值高位起伏很大,而低位几乎没有变化时,高位无法参与运算
可以看到,两次计算出的hash相等,产生了hash冲突
所以无符号右移16位的目的是使高混乱度地区与地混乱度地区做一个中和,提高低位的随机性,减少哈希冲突。

作者:键盘歌唱家

https://blog.csdn.net/MoastAll/article/details/108237154

公众号“Java精选”所发表内容注明来源的,版权归原出处所有(无法查证版权的或者未注明出处的均来自网络,系转载,转载的目的在于传递更多信息,版权属于原作者。如有侵权,请联系,笔者会第一时间删除处理!

------ THE END ------

精品资料,超赞福利!


3000+ 道面试题在线刷,最新、最全 Java 面试题!

期往精选  点击标题可跳转

【284期】高逼格的别样 SQL 写法:行行比较!

【285期】JDK9 为何要将 String 的底层实现由 char[] 改成了 byte[]?

【286期】领域驱动设计(DDD)架构演进和DDD的几种典型架构介绍(图文详解)

【287期】5 款免费又好用的 Docker 管理神器!酷炫到没朋友!

【288期】面试官问:如何解决打开 IDEA 对 CPU 占用率超高的问题?

【289期】Java 8 新特性:Comparator.naturalOrder | 自然排序

【290期】关于零拷贝技术,你了解多少?常见典型案例?

【291期】面试官问:如何优化慢 SQL 语句?5 大步骤和 10 个案例!

 技术交流群!

最近有很多人问,有没有读者交流群!想知道如何加入?方式很简单,兴趣相投的朋友,只需要点击下方卡片,回复“加群”,即可无套路入交流群!

文章有帮助的话,在看,转发吧!

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存