阅读本文大概需要5分钟
堆其实是个很简单的数据结构
说到堆这种数据结构,很多人的第一反应是感觉很复杂,其实不然,堆就是个优先级队列而已,或者,堆其实就是一种树。本文先讲原理,后面给出堆的实现代码。
优先级队列可以用有序数组来实现,这种做法的问题是,尽管删除最大数据项的时间复杂度为O(1),但是插入还是需要较长的O(N)时间,这是因为必须移动数组中平均一半的数据项以插入新数据项,并在完成插入后,数组依然有序。
本文主要介绍实现优先级队列的另一种结构:堆。堆是一种树,并非java和C++等编译语言里的“堆”。由它实现的优先级队列的插入和删除的时间复杂度都是O(logN)。尽管这样删除的时间变慢了一些,但是插入的时间快的多了。当速度非常重要,且有很多插入操作是,可以选择堆来实现优先级队列。堆有如下特点:
它是完全二叉树。即除了树的最后一层节点不需要是满的外,其他的每一层从左到右都完全是满的。
它常常用一个数组实现。用数组实现的完全二叉树中,节点的索引有如下特点(设该节点的索引为x):
它的父节点的索引为 (x-1) / 2; 它的左子节点索引为 2x + 1; 它的右子节点索引为 2x + 2。堆中每个节点的关键字都大于(或等于)这个节点的子节点的关键字。这也是堆中每个节点必须满足的条件。所以堆和二叉搜索树相比,是弱序的。
向堆中插入数据,首先将数据项存放到叶节点中(即存到数组的最后一项),然后从该节点开始,逐级向上调整,直到满足堆中节点关键字的条件为止。
从堆中删除数据与插入不同,删除时永远删除根节点的数据,因为根节点的数据最大,删除完后,将最后一个叶节点移到根的位置,然后从根开始,逐级向下调整,直到满足堆中节点关键字的条件为止。
原理就这么多,堆真的很简单。
下面给出堆的实现代码:
public class Heap {
private Node[] heapArray;
private int maxSize;
private int currentSize;
public Heap(int mx) {
maxSize = mx;
currentSize = 0;
heapArray = new Node[maxSize];
}
public boolean isEmpty() {
return (currentSize == 0)? true : false;
}
public boolean isFull() {
return (currentSize == maxSize)? true : false;
}
public boolean insert(int key) {
if(isFull()) {
return false;
}
Node newNode = new Node(key);
heapArray[currentSize] = newNode;
trickleUp(currentSize++);
return true;
}
//向上调整
public void trickleUp(int index) {
int parent = (index - 1) / 2; //父节点的索引
Node bottom = heapArray[index]; //将新加的尾节点存在bottom中
while(index > 0 && heapArray[parent].getKey() < bottom.getKey()) {
heapArray[index] = heapArray[parent];
index = parent;
parent = (parent - 1) / 2;
}
heapArray[index] = bottom;
}
public Node remove() {
Node root = heapArray[0];
heapArray[0] = heapArray[--currentSize];
trickleDown(0);
return root;
}
//向下调整
public void trickleDown(int index) {
Node top = heapArray[index];
int largeChildIndex;
while(index < currentSize/2) { //while node has at least one child
int leftChildIndex = 2 * index + 1;
int rightChildIndex = leftChildIndex + 1;
//find larger child
if(rightChildIndex < currentSize && //rightChild exists?
heapArray[leftChildIndex].getKey() < heapArray[rightChildIndex].getKey()) {
largeChildIndex = rightChildIndex;
}
else {
largeChildIndex = leftChildIndex;
}
if(top.getKey() >= heapArray[largeChildIndex].getKey()) {
break;
}
heapArray[index] = heapArray[largeChildIndex];
index = largeChildIndex;
}
heapArray[index] = top;
}
//根据索引改变堆中某个数据
public boolean change(int index, int newValue) {
if(index < 0 || index >= currentSize) {
return false;
}
int oldValue = heapArray[index].getKey();
heapArray[index].setKey(newValue);
if(oldValue < newValue) {
trickleUp(index);
}
else {
trickleDown(index);
}
return true;
}
public void displayHeap() {
System.out.println("heapArray(array format): ");
for(int i = 0; i < currentSize; i++) {
if(heapArray[i] != null) {
System.out.print(heapArray[i].getKey() + " ");
}
else {
System.out.print("--");
}
}
}
}
class Node {
private int iData;
public Node(int key) {
iData = key;
}
public int getKey() {
return iData;
}
public void setKey(int key) {
iData = key;
}
}
这个实现的代码,可以在等公交的时候、吃饭排队的时候拿来看看,利用碎片化时间来学习。
这里不仅仅有技术
相关推荐阅读: