查看原文
其他

手把手教你做单细胞测序(四)——多样本整合

Biomamba Biomamba 生信基地 2023-06-15
上次的视频中已花费大量时间讲解过单样本分析的基本流程,所以这节课的学习需要有上节课的基础,希望大家按顺序观看。此次的内容较简单、篇幅也较小,代码与视频请看下文,测试数据集与代码存于文末链接之中。由于测试数据比较特殊,并没有展示出去批次的精妙之处,留一个悬念给大家吧,可以用自己的数据集测试一下。




###########单纯的merge################# library(Seurat) library(multtest) library(dplyr) library(ggplot2) library(patchwork)  ##########准备用于拆分的数据集###########pbmc <- subset(pbmc, downsample = 50)ifnb <- readRDS('pbmcrenamed.rds')ifnb.list <- SplitObject(ifnb, split.by = "group")C57 <- ifnb.list$C57AS1 <- ifnb.list$AS1######简单merge######## #不具有去批次效应功能pbmc <- merge(C57, y = c(AS1), add.cell.ids = c("C57", "AS1"), project = "ALL")pbmchead(colnames(pbmc))unique(sapply(X = strsplit(colnames(pbmc), split = "_"), FUN = "[", 1))table(pbmc$orig.ident)##############anchor###############library(Seurat)library(tidyverse)### testA ----myfunction1 <- function(testA.seu){ testA.seu <- NormalizeData(testA.seu, normalization.method = "LogNormalize", scale.factor = 10000) testA.seu <- FindVariableFeatures(testA.seu, selection.method = "vst", nfeatures = 2000) return(testA.seu)}C57 <- myfunction1(C57)AS1 <- myfunction1(AS1)
### Integration ----testAB.anchors <- FindIntegrationAnchors(object.list = list(C57,AS1), dims = 1:20)testAB.integrated <- IntegrateData(anchorset = testAB.anchors, dims = 1:20)
#需要注意的是:上面的整合步骤相对于harmony整合方法,对于较大的数据集(几万个细胞)#非常消耗内存和时间,大约9G的数据32G的内存就已经无法运行;#当存在某一个Seurat对象细胞数很少(印象中200以下这样子),#会报错,这时建议用第二种整合方法
DefaultAssay(testAB.integrated) <- "integrated"
# # Run the standard workflow for visualization and clusteringtestAB.integrated <- ScaleData(testAB.integrated, features = rownames(testAB.integrated))testAB.integrated <- RunPCA(testAB.integrated, npcs = 50, verbose = FALSE)testAB.integrated <- FindNeighbors(testAB.integrated, dims = 1:30)testAB.integrated <- FindClusters(testAB.integrated, resolution = 0.5)testAB.integrated <- RunUMAP(testAB.integrated, dims = 1:30)testAB.integrated <- RunTSNE(testAB.integrated, dims = 1:30)p1<- DimPlot(testAB.integrated,label = T,split.by = 'group')#integrated
DefaultAssay(testAB.integrated) <- "RNA"testAB.integrated <- ScaleData(testAB.integrated, features = rownames(testAB.integrated))testAB.integrated <- RunPCA(testAB.integrated, npcs = 50, verbose = FALSE)testAB.integrated <- FindNeighbors(testAB.integrated, dims = 1:30)testAB.integrated <- FindClusters(testAB.integrated, resolution = 0.5)testAB.integrated <- RunUMAP(testAB.integrated, dims = 1:30)testAB.integrated <- RunTSNE(testAB.integrated, dims = 1:30)
p2 <- DimPlot(testAB.integrated,label = T,split.by = 'group')p1|p2
###########harmony 速度快、内存少################if(!require(harmony))devtools::install_github("immunogenomics/harmony")test.seu <- pbmctest.seu <- test.seu%>% Seurat::NormalizeData() %>% FindVariableFeatures(selection.method = "vst", nfeatures = 2000) %>% ScaleData()test.seu <- RunPCA(test.seu, npcs = 50, verbose = FALSE)

#####run 到PCA再进行harmony,相当于降维########test.seu=test.seu %>% RunHarmony("group", plot_convergence = TRUE)
test.seu <- test.seu %>% RunUMAP(reduction = "harmony", dims = 1:30) %>% FindNeighbors(reduction = "harmony", dims = 1:30) %>% FindClusters(resolution = 0.5) %>% identity()
test.seu <- test.seu %>% RunTSNE(reduction = "harmony", dims = 1:30) p3 <- DimPlot(test.seu, reduction = "tsne", group.by = "group", pt.size=0.5)+theme( axis.line = element_blank(), axis.ticks = element_blank(),axis.text = element_blank())p4 <- DimPlot(test.seu, reduction = "tsne", group.by = "ident", pt.size=0.5, label = TRUE,repel = TRUE)+theme( axis.line = element_blank(), axis.ticks = element_blank(),axis.text = element_blank())p3|p4

测试数据:

链接:https://pan.baidu.com/s/1qlaNJ95l6v2olJViBWR-qw

提取码:oi22


您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存