我们都是架构师!
关注架构师(JiaGouX),添加“星标”
获取每天技术干货,一起成为牛逼架构师
技术群请加若飞:1321113940 进架构师群
投稿、合作、版权等邮箱:admin@137x.com
因公众号更改推送规则,请点“在看”并加“星标”第一时间获取精彩技术分享
目录
前言
设计示例
后记
前言
但是高频数据流处理系统中,Redis 的压力也会很大,同时 I/O 开销才是耗时的主要原因,这时候为了降低 Redis 读写压力我们可以用到本地缓存,Guava 为我们提供了优秀的本地缓存 API,包含了过期策略等等,编码难度低,个人非常推荐。
设计示例
数据在新增到 MySQL 不进行缓存,在精确查找进行缓存,做到查询即缓存,不查询不缓存。
// 伪代码示例 Xx代表你的的业务对象 如User Goods等等
public class XxLazyCache {
@Autowired
private RedisTemplate<String, Xx> redisTemplate;
@Autowired
private XxService xxService;// 你的业务service
/**
* 查询 通过查询缓存是否存在驱动缓存加载 建议在前置业务保证id对应数据是绝对存在于数据库中的
*/
public Xx getXx(int id) {
// 1.查询缓存里面有没有数据
Xx xxCache = getXxFromCache(id);
if(xxCache != null) {
return xxCache;// 卫语句使代码更有利于阅读
}
// 2.查询数据库获取数据 我们假定到业务这一步,传过来的id都在数据库中有对应数据
Xx xx = xxService.getXxById(id);
// 3.设置缓存、这一步相当于Redis缓存懒加载,下次再查询此id,则会走缓存
setXxFromCache(xx);
return xx;
}
}
/**
* 对xx数据进行修改或者删除操作 操作数据库成功后 删除缓存
* 删除请求 - 删除数据库数据 删除缓存
* 修改请求 - 更新数据库数据 删除缓存 下次在查询时候就会从数据库拉取新的数据到缓存中
*/
public void deleteXxFromCache(long id) {
String key = "Xx:" + xx.getId();
redisTemplate.delete(key);
}
private void setXxFromCache(Xx xx) {
String key = "Xx:" + xx.getId();
redisTemplate.opsForValue().set(key, xx);
}
private Xx getXxFromCache(int id) {
// 通过缓存前缀拼装唯一主键作为缓存Key 如Xxx信息 就是Xxx:id
String key = "Xx:" + id;
return redisTemplate.opsForValue().get(key);
}
}
// 业务类
public class XxServie {
@Autowired
private XxLazyCache xxLazyCache;
// 查询数据库
public Xx getXxById(long id) {
// 省略实现
return xx;
}
public void updateXx(Xx xx) {
// 更新MySQL数据 省略
// 删除缓存
xxLazyCache.deleteXxFromCache(xx.getId());
}
public void deleteXx(long id) {
// 删除MySQL数据 省略
// 删除缓存
xxLazyCache.deleteXxFromCache(xx.getId());
}
}
// 实体类
@Data
public class Xx {
// 业务主键
private Long id;
// ...省略
}
优点如下:
缺点如下:
总结:
微服务场景下,多个微服务使用一个大缓存,流数据业务下,高频读取缓存对 Redis 压力很大,我们使用本地缓存结合 Redis 缓存使用,降低 Redis 压力,同时本地缓存没有连接开销,性能更优。
业务场景:在流处数处理过程中,微服务对多个设备上传的数据进行处理,每个设备有一个 code,流数据的频率高,在消息队列发送过程中使用分区发送,我们需要为设备 code 生成对应的自增号,用自增号对 kafka 中 topic 分区数进行取模。
这样如果有 10000 台设备,自增号就是 0~9999,在取模后就进行分区发送就可以做到每个分区均匀分布。
这个自增号我们使用 redis 的自增数生成,生成后放到 redis 的 hash 结构进行缓存,每次来一个设备,我们就去这个 hash 缓存中取,没有取到就使用自增数生成一个,然后放到 redis 的 hash 缓存中。
这时候每个设备的自增数一经生成是不会再发生改变的,我们就想到使用本地缓存进行优化,避免高频的调用 redis 去获取,降低 redis 压力。
/**
* 此缓存演示如何结合redis自增数 hash 本地缓存使用进行设备自增数的生成、缓存、本地缓存
* 本地缓存使用Guava Cache
*/
public class DeviceIncCache {
/**
* 本地缓存
*/
private Cache<String, Integer> localCache = CacheBuilder.newBuilder()
.concurrencyLevel(16) // 并发级别
.initialCapacity(1000) // 初始容量
.maximumSize(10000) // 缓存最大长度
.expireAfterAccess(1, TimeUnit.HOURS) // 缓存1小时没被使用就过期
.build();
@Autowired
private RedisTemplate<String, Integer> redisTemplate;
/**
* redis自增数缓存的key
*/
private static final String DEVICE_INC_COUNT = "device_inc_count";
/**
* redis设备编码对应自增数的hash缓存key
*/
private static final String DEVICE_INC_VALUE = "device_inc_value";
/**
* 获取设备自增数
*/
public int getInc(String deviceCode){
// 1.从本地缓存获取
Integer inc = localCache.get(deviceCode);
if(inc != null) {
return inc;
}
// 2.本地缓存未命中,从redis的hash缓存获取
inc = (Integer)redisTemplate.opsForHash().get(DEVICE_INC_VALUE, deviceCode);
// 3. redis的hash缓存中没有,说明是新设备,先为设备生成一个自增号
if(inc == null) {
inc = redisTemplate.opsForValue().increment(DEVICE_INC_COUNT).intValue;
// 添加到redis hash缓存
redisTemplate.opsForHash().put(DEVICE_INC_VALUE, deviceCode, inc);
}
// 4.添加到本地缓存
localCache.put(deviceCode, inc);
// 4.返回自增数
return inc;
}
}
优点如下:
缺点如下:
总结:
后记
redis 提供了丰富的数据类型及api,非常适合业务系统开发,统计计数(increment,decrement),标记位(bitmap),松散数据(hash),先进先出、队列式读取(list)。
guava 缓存作为本地缓存,能够高效的读取的同时,提供了大量 api 方便我们控制本地缓存的数据量及冷数据淘汰。
我们充分的学习这些特性能够帮助我们在业务开发中更加轻松灵活,在空间与时间上找到一个平衡点。
如喜欢本文,请点击右上角,把文章分享到朋友圈
如有想了解学习的技术点,请留言给若飞安排分享
·END·
相关阅读:
作者:热黄油啤酒
来源:https://juejin.cn/post/7000263632151904293
版权申明:内容来源网络,仅供分享学习,版权归原创者所有。除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢!
我们都是架构师!
关注架构师(JiaGouX),添加“星标”
获取每天技术干货,一起成为牛逼架构师
技术群请加若飞:1321113940 进架构师群
投稿、合作、版权等邮箱:admin@137x.com