接下来介绍一下对结果集的优化。举个比较直观的例子,我们都知道 XML 的表现形式是非常好的,那为什么还有 JSON 呢?除了书写要简单一些,一个重要的原因就是它的体积变小了,传输效率和解析效率变高了,像 Google 的 Protobuf,体积就更小了一些。虽然可读性降低,但在一些高并发场景下(如 RPC),能够显著提高效率,这是典型的对结果集的优化。这是由于我们目前的 Web 服务,都是 C/S 模式。数据从服务器传输到客户端,需要分发多份,这个数据量是急剧膨胀的,每减少一小部分存储,都会有比较大的传输性能和成本提升。 像 Nginx,一般都会开启 GZIP 压缩,使得传输的内容保持紧凑。客户端只需要一小部分计算能力,就可以方便解压。由于这个操作是分散的,所以性能损失是固定的。 了解了这个道理,我们就能看到对于结果集优化的一般思路,你要尽量保持返回数据的精简。一些客户端不需要的字段,那就在代码中,或者直接在 SQL 查询中,就把它去掉。 对于一些对时效性要求不高,但对处理能力有高要求的业务。我们要吸取缓冲区的经验,尽量减少网络连接的交互,采用批量处理的方式,增加处理速度。 结果集合很可能会有二次使用,你可能会把它加入缓存中,但依然在速度上有所欠缺。这个时候,就需要对数据集合进行处理优化,采用索引或者 Bitmap 位图等方式,加快数据访问速度。
4、资源冲突优化
我们在平常的开发中,会涉及很多共享资源。这些共享资源,有的是单机的,比如一个 HashMap;有的是外部存储,比如一个数据库行;有的是单个资源,比如 Redis 某个 key 的Setnx;有的是多个资源的协调,比如事务、分布式事务等。现实中的性能问题,和锁相关的问题是非常多的。大多数我们会想到数据库的行锁、表锁、Java 中的各种锁等。在更底层,比如 CPU 命令级别的锁、JVM 指令级别的锁、操作系统内部锁等,可以说无处不在。只有并发,才能产生资源冲突。也就是在同一时刻,只能有一个处理请求能够获取到共享资源。解决资源冲突的方式,就是加锁。再比如事务,在本质上也是一种锁。按照锁级别,锁可分为乐观锁和悲观锁,乐观锁在效率上肯定是更高一些;按照锁类型,锁又分为公平锁和非公平锁,在对任务的调度上,有一些细微的差别。对资源的争用,会造成严重的性能问题,所以会有一些针对无锁队列之类的研究,对性能的提升也是巨大的。
5、算法优化
算法能够显著提高复杂业务的性能,但在实际的业务中,往往都是变种。由于存储越来越便宜,在一些 CPU 非常紧张的业务中,往往采用空间换取时间的方式,来加快处理速度。算法属于代码调优,代码调优涉及很多编码技巧,需要使用者对所使用语言的 API 也非常熟悉。有时候,对算法、数据结构的灵活使用,也是代码优化的一个重要内容。比如,常用的降低时间复杂度的方式,就有递归、二分、排序、动态规划等。一个优秀的实现,比一个拙劣的实现,对系统的影响是非常大的。比如,作为 List 的实现,LinkedList 和 ArrayList 在随机访问的性能上,差了好几个数量级;又比如,CopyOnWriteList 采用写时复制的方式,可以显著降低读多写少场景下的锁冲突。而什么时候使用同步,什么时候是线程安全的,也对我们的编码能力有较高的要求。这部分的知识,就需要我们在平常的工作中注意积累,后面的课时中,也会挑比较重要的知识点穿插讲解。
6、高效实现
在平时的编程中,尽量使用一些设计理念良好、性能优越的组件。比如,有了 Netty,就不用再选择比较老的 Mina 组件。而在设计系统时,从性能因素考虑,就不要选 SOAP 这样比较耗时的协议。再比如,一个好的语法分析器(比如使用 JavaCC),其效率会比正则表达式高很多。总之,如果通过测试分析,找到了系统的瓶颈点,就要把关键的组件,使用更加高效的组件进行替换。在这种情况下,适配器模式是非常重要的。这也是为什么很多公司喜欢在现有的组件之上,再抽象一层自己的;而当在底层组件进行切换的时候,上层的应用并无感知。