我们都是架构师!
关注架构师(JiaGouX),添加“星标”
获取每天技术干货,一起成为牛逼架构师
技术群请加若飞:1321113940 进架构师群
投稿、合作、版权等邮箱:admin@137x.com
1. 为什么需要分布式 ID
对于单体系统来说,主键 ID 常用主键自动的方式进行设置。这种 ID 生成方法在单体项目是可行的,但是对于分布式系统,分库分表之后就不适应了。比如订单表数据量太大了,分成了多个库,如果还采用数据库主键自增的方式,就会出现在不同库 id 一致的情况,虽然是不符合业务的。
2. 业务系统对分布式 ID 有什么要求
全局唯一性:ID 是作为唯一的标识,不能出现重复;
趋势递增:互联网比较喜欢 MySQL 数据库,而 MySQL 数据库默认使用 InnoDB 存储引擎,其使用的是聚集索引,使用有序的主键 ID 有利于保证写入的效率;
单调递增:保证下一个 ID 大于上一个 ID,这种情况可以保证事务版本号,排序等特殊需求实现;
信息安全:前面说了 ID 要递增,但是最好不要连续。如果 ID 是连续的,容易被恶意爬取数据,指定一系列连续的,所以 ID 递增但是不规则是最好的。
3. 分布式 ID 生成方案
UUID
数据库自增
号段模式
Redis 实现
雪花算法(SnowFlake)
百度 Uidgenerator
美团 Leaf
滴滴 TinyID
UUID (Universally Unique Identifier),通用唯一识别码的缩写。
UUID 的标准型式包含 32 个 16 进制数字,以连字号分为五段,形式为 8-4-4-4-12 的 36 个字符,示例 863e254b-ae34-4371-87da-204b71d46a7b。
UUID 理论上的总数为 1632=2128,约等于 3.4 x 10^38。
优点:性能非常高,本地生成的,不依赖于网络;
缺点:不易存储。16 字节 128 位,36 位长度的字符串信息不安全,基于 MAC 地址生成 UUID 算法可能会造成 MAC 地址泄露,暴露使用者的位置。UUID 的无序性可能会引起数据位置频繁变动,影响性能。
在分布式环境也可以使用 MySQL 自增实现分布式 ID 的生成。如果分库分表了,当然不是简单地设置好 auto_increment_increment 和 auto_increment_offset 就行。在分布式系统中,我们可以多部署几台机器,每台机器设置不同的初始值,且步长和机器数相等。
比如有两台机器,设置步长 step 为 2。Server1 的初始值为 1(1, 3, 5, 7, 9, 11…),Server2 的初始值为 2(2, 4, 6, 8, 10…)。
这是 Flickr 团队在 2010 年撰文介绍的一种主键生成策略(Ticket Servers: Distributed Unique Primary Keys on the Cheap )。
假设有 N 台机器,step 就要设置为 N,如下图进行设置:
这种方案看起来是可行的。但是如果要扩容,步长 step 等要重新设置。
假如只有一台机器,步长就是 1,比如 1,2,3,4,5,6。这时候如果要进行扩容,就要重新设置。
机器 2 可以挑一个偶数的数字,这个数字在扩容时间内,数据库自增达不到这个数的,然后步长就是 2。机器 1 要重新设置 step 为 2,然后还是以一个奇数开始进行自增。
这个过程看起来不是很杂,但是如果机器很多的话,那就要花很多时间去维护重新设置。
这种实现的缺陷:
ID 没有了单调递增的特性,只能趋势递增。有些业务场景可能不符合;
数据库压力还是比较大,每次获取 ID 都需要读取数据库,只能通过多台机器提高稳定性和性能。
这种模式也是现在生成分布式 ID 的一种方法。实现思路是,会从数据库获取一个号段范围,比如 [1,1000],生成 1 到 1000 的自增 ID 加载到内存中。
建表结构如下:
CREATE TABLE id_generator (
id int(10) NOT NULL,
max_id bigint(20) NOT NULL COMMENT '当前最大id',
step int(20) NOT NULL COMMENT '号段的布长',
biz_type int(20) NOT NULL COMMENT '业务类型',
version int(20) NOT NULL COMMENT '版本号',
PRIMARY KEY (`id`)
)
biz_type:不同业务类型;
max_id :当前最大的 id;
step:代表号段的步长;
version :版本号,就像 MVCC 一样,可以理解为乐观锁。
等 ID 都用完了,再去数据库获取,然后更改最大值:
update id_generator set max_id = #{max_id+step}, version = version + 1 where version = # {version} and biz_type = XXX
>+-------------+--------------+------+-----+-------------------+-----------------------------+
| Field | Type | Null | Key | Default | Extra |
+-------------+--------------+------+-----+-------------------+-----------------------------+
| biz_tag | varchar(128) | NO | PRI | | |
| max_id | bigint(20) | NO | | 1 | |
| step | int(11) | NO | | NULL | |
| desc | varchar(256) | YES | | NULL | |
| update_time | timestamp | NO | | CURRENT_TIMESTAMP | on update CURRENT_TIMESTAMP |
+-------------+--------------+------+-----+-------------------+-----------------------------+
Leafsnowflake 方案
Leafsnowflake 是在雪花算法上改进来的,引用官网技术博客介绍:
如喜欢本文,请点击右上角,把文章分享到朋友圈
如有想了解学习的技术点,请留言给若飞安排分享
因公众号更改推送规则,请点“在看”并加“星标”第一时间获取精彩技术分享
·END·
相关阅读:
作者:smileNicky
来源:blog.csdn.net/u014427391/article/details/127408363
版权申明:内容来源网络,仅供分享学习,版权归原创者所有。除非无法确认,我们都会标明作者及出处,如有侵权烦请告知,我们会立即删除并表示歉意。谢谢!
我们都是架构师!
关注架构师(JiaGouX),添加“星标”
获取每天技术干货,一起成为牛逼架构师
技术群请加若飞:1321113940 进架构师群
投稿、合作、版权等邮箱:admin@137x.com