查看原文
其他

Hot Chips 2023会议资料分享

唐僧 huangliang 企业存储技术
2024-12-09

继去年的《Hot Chips 34会议资料分享》之后,今年的Hot Chips 2023技术会议已经是第35届了。

记得前两年有朋友说,Hot Chips的ppt看了也就是能用来吹吹牛(偏marketing),不过今年大家的总体评价有变化,应该是技术干货多了些,问我找资料的人也多点了。其实有些英文好的朋友,早就看油管或者B站上有热心人搬过来的视频。像我这样的,还是照例等到3个月资料免费公开。

Hot Chips 2023会议资料网盘下载

https://pan.baidu.com/s/1iOX4pBT7NRpIJSs2MNKm6Q?pwd=9hkn

提取码:9hkn

官网来源  https://hc2023.hotchips.org/  上面还有视频。

整个会议内容包括这些板块:ML Inference(推理)、ML-Training(训练)、Chiplets/UCI、Processing in Memory(存内计算)、CPU、Platforms、Interconnects(互连)、FPGAs & Cooling

可以说AI,特别是最近火热的生成式AI的发展,给芯片行业带来了新一轮刺激。除了片上互连、存内计算这些技术。需求上受益的还有网络(包括IB和高速以太网等)、存储(包括HBM内存、NAND闪存等)、以及被功率密度提高带动的散热/制冷行业。

下面是具体日程&议题,供大家参考。

Tutorials: Sunday, August 27, 2023

Time (PDT)TitlePresenters
7:45AM-8:30AMBreakfast/Registration

8:30AM-10:30AMML Inference

Chair: Tom St. John


ML Inference Overview
 
Micah Villmow, NVIDIA

Quantization Methods for Efficient ML Inference
 
Amir Gholami, UC Berkeley

ML Inference at the Edge
 
Felix Baum, Qualcomm
10:30AM-11:00AMCoffee Break (1/2 hr)

11:00AM-12:15PMML Inference

Chair: Tom St. John


PyTorch 2.0
 
Elias Ellison, Meta

Hardware Requirements for Exploiting Sparsity in ML Inference
 
Zhibin Xiao, Moffett AI
12:15PM-1:30PMLunch (1 hr 15 min)

1:30PM-3:30PMChiplets/UCI

Chair: Debendra Das Sharma & Nathan Kalyansundharam


UCIe Overview & Usage Models
 
Debendra Das Sharma, Intel & Nathan Kalyansundharam, AMD

UCIe Protocol
 
Swadesh Choudhary, Intel & Marvin Denman, NVIDIA
3:30PM-4:00PMCoffee Break (1/2 hr)

4:00PM-5:30PMChiplets/UCI

Chair: Debendra Das Sharma & Nathan Kalyansundharam


Electrical, Form Factor and Compliance
 
Anwar Kashem, AMD & Gerald Pasdast, Intel

Software, Manageability & Security
 
Jérôme Glisse, Google & Sridhar Muthrasanallur, Intel
5:30PM-7:00PMReception

Conference Day 1: Monday, August 28, 2023

Time (PDT)TitlePresenters
7:45AM-8:45AMBreakfast/Registration

8:45AM-9:00AMOpening Remarks


General Chair Welcome
 
Gabriel Southern & Ron Diamant

Progam Co-Chairs Welcome
 
Natalia Vassilieva & Heiner Litz
9:00AM-10:00AMKeynote #1

Chair: Natalia Vassilieva


Exciting Directions for ML Models and the Implications for Computing Hardware
 
Jeff Dean & Amin Vahdat, Google
10:00AM-11:00AMProcessing in Memory

Chair: Jae W. Lee


Memory-centric Computing with SK Hynix’s Domain-Specific Memory
 
Yongkee Kwon, SK Hynix

Samsung AI-cluster system with HBM-PIM and CXL-based Processing-near-Memory for transformer-based LLMs
 
Jin Hyun Kim, Samsung
11:00AM-11:05AMSachs Memorial


Sachs Memorial
 
Alan J Smith, UC Berkeley
11:05AM-11:30AMCoffee Break

11:30AM-1:00PMCPU 1

Chair: Pradeep K. Dubey


ARM’s Neoverse V2 platform: leadership performance and power efficiency for next-generation cloud computing, ML and HPC workloads
 
Magnus Bruce, ARM

AMD Next Generation “Zen 4” Core and 4th Gen AMD EPYCTM 9004 Server CPU
 
Kai Troester & Ravi Bhargava, AMD

Ventana’s Veyron V1 Data Center-Class RISC-V Processor
 
Greg Favor, Ventana
1:00PM-2:15PMLunch (1 hr 15 min)

2:15PM-4:15PMPlatforms

Chair: Mark D. Hill


Architecting for Flexibility and Value with future Intel® Xeon® processors
 
Chris Gianos, Intel

CSS-Genesis: Arm’s Neoverse N2 platform, delivered to partners as a fully verified, customizable compute sub-system
 
Anitha Kona, ARM

Intel® Energy Efficiency Architecture
 
Efraim Rotem, Intel

Caliptra: An Open-Source Root of Trust for Measurements
 
Bharat Pillilli, Microsoft
4:15PM-4:45PMCoffee Break (1/2 hr)

4:45PM-6:15PMCPU 2

Chair: Ralph Wittig


Intel® Xeon® processors built on Efficient-core (E-Core): The Next Generation of High Performance, Energy-Efficient Computing
 
Don Soltis, Intel

AMD Ryzen 7040 Series Mobile Processor
 
Mahesh Subramony & David Kramer, AMD

Detailed Architecture Analysis and Key Features of SiFive’s latest high-performance out-of-order Vector Processor
 
Brad Burgess, SiFive
6:15PM-7:45PMReception

Conference Day 2: Tuesday, August 29, 2023

Time (PDT)TitlePresenters
7:45AM-8:30AMBreakfast/Registration

8:30AM-9:00AMPoster Lighting Talks (2 minutes/poster)

Chair: Priyanka Raina


Poster Lighting Talks
 

9:00AM-10:00AMKeynote #2

Chair: Heiner Litz


Hardware for Deep Learning
 
Bill Dally, NVIDIA
10:00AM-11:00AMML-Training

Chair: Dave Ditzel


A Machine Learning Supercomputer With An Optically Reconfigurable Interconnect and Embeddings Support
 
Norman Jouppi & Andy Swing, Google

Inside the Cerebras Wafer-Scale Cluster
 
Sean Lie, Cerebras
11:00AM-11:30AMCoffee Break (1/2 hr)

11:30AM-1:00PMInterconnects

Chair: Yasuo Ishii


NVIDIA’s Resource Transmutable Network Processing ASIC
 
Kevin Deierling, NVIDIA

Hummingbird Low-Latency Computing Engine
 
Maurice Steinman, Lightelligence

The First Direct Mesh-to-Mesh Photonic Fabric
 
Jason Howard, Intel
1:00PM-2:15PMLunch (1 hr 15 min)

2:15PM-4:15PMML-Inference

Chair: Grant Ayers


IBM NorthPole Neural Inference Machine
 
Dharmendra Modha, IBM

Moffett Antoum: A Deep-Sparse AI Inference System-on-Chip for Vision and Large Language Models
 
Zhibin Xiao, Moffet AI

Qualcomm® Hexagon™ NPU
 
Eric Mahurin, Qualcomm

Supercharged AI inference on modern CPUs
 
Lawrence Spracklen & Subutai Ahmad, Numenta
4:15PM-4:45PMCoffee Break (1/2 hr)

4:45PM-6:15PMFPGAs & Cooling

Chair: Forest Baskett


AMD Next Generation FPGA Built From Chiplets
 
Dinesh Gaitonde, AMD

Intel’s Agilex-9 Direct RF FPGAs with Integrated 64 GSPS Data Converters
 
Benjamin Esposito, Intel

High Performance Cold Plates for Data Center Thermal Management via Electrochemical Additive Manufacturing (ECAM)
 
Ian Winfield, Fabric8Labs
6:15PM-6:30PMClosing Remarks


Closing Remarks
 
Gabriel Southern & Ron Diamant


Posters

TitleAuthors & Affiliation
TrustForge: A Cryptographically Secure Enclave for Azure and AWS Todd Austin, Valeria Bertacco and Alex Kisil; Agita Labs
An Open-Source 130-nm Fusion-Enabled Deconvolution Kernel Generator IC For Real-Time mmWave Radar Platform Motion Compensation Nikhil Poole, Priyanka Raina and Amin Arbabian; Stanford University
A Scalable Multi-Chiplet Deep Learning Accelerator with Hub-Side 2.5D Heterogeneous Integration Zhanhong Tan, Yifu Wu, Yannian Zhang, Haobing Shi, Wuke Zhang and Kaisheng Ma; Tsinghua University
PHEP: Paillier Homomorphic Encryption Processors for Privacy-Preserving Applications in Cloud Computing Guiming Shi, Yi Li, Xueqiang Wang, Zhanhong Tan, Dapeng Cao, Jingwei Cai, Yuchen Wei, Zehua Li, Wuke Zhang, Yifu Wu, Wei Xu and Kaisheng Ma; Tsinghua University
HyperAccel LPU: Accelerating Hyperscale Models for Generative AI  Seungjae Moon, Junsoo Kim, Jung-Hoon Kim, Junseo Cha, Gyubin Choi, Seongmin Hong and Joo-Young Kim; HyperAccel / KAIST
An Abstract of SiMa.ai’s MLSoC Architecture  Srivi Dhruvanarayan; SiMa.ai
Shaheen: An Open, Secure, and Scalable RV64 SoC for Autonomous Nano-UAVs. Luca Valente, Asif Hussain Chiralil Veeran, Mattia Sinigaglia, Yvan Tortorella, Alessandro Nadalini, Nils Wistoff, Bruno Sà, Angelo Garofalo, Rafail Psiakis, Mohammed Tolba, Ari Kulmala, Nimisha Limaye, Ozgur Sinanoglu, Sandro Pinto, Daniele Palossi, Luca Benini, Baker Mohammad and Davide Rossi; University of Bologna
A Heterogeneous SoC for Bluetooth LE in 28nm  Felicia Guo, Nayiri Krzysztofowicz, Alex Moreno, Jeffrey Ni, Daniel Lovell, Yufeng Chi, Kareem Ahmad, Sherwin Afshar, Josh Alexander, Dylan Brater, Cheng Cao, Daniel Fan, Ryan Lund, Jackson Paddock, Griffin Prechter, Troy Sheldon, Shreesha Sreedhara, Anson Tsai, Eric Wu, Kerry Yu, Daniel Fritchman, Aviral Pandey, Ali Niknejad, Kristofer Pister and Borivoje Nikolic; University of California Berkeley
Driving Compute Scale-out Performance with Optical I/O Chiplets in Advanced System-in-Package Platforms Mark Wade, Chen Sun, Matt Sysak, Vladimir Stojanović, Pooya Tadayon, Ravi Mahajan and Babak Sabi; Ayar Labs
A Heterogeneous RISC-V SoC for ML Applications in Intel 16 Technology Yufeng Chi, Franklin Huang, Raghav Gupta, Ella Schwarz, Jennifer Zhou, Reza Sajadiany, Animesh Agrawal, Max Banister, Michelle Boulos, Jason Chandran, Jessica Dowdall, Leena Elzeiny, Claire Gantan, Anthony Han, Roger Hsiao, Chadwick Leung, Edwin Lim, Jose Rodriguez, Tushar Sondhi, Mitchell Twu, Rongyi Wang, Mike Xiao, Ruohan Yan, Paul Kwon, Zhaokai Liu, Jerry Zhao, Bob Zhou, Ali Niknejad, Kristofer Pister and Borivoje Nikolić; University of California, Berkeley


扩展阅读:企业存储技术》文章分类索引(微信公众号专辑)


:本文只代表作者个人观点,与任何组织机构无关,如有错误和不足之处欢迎在留言中批评指正。进一步交流可加微信:490834312。如果您想在这个公众号上分享自己的技术干货,也欢迎联系我:)


感谢您的阅读和支持!《企业存储技术》微信公众号:HL_Storage

长按二维码可直接识别关注


历史文章汇总:http://www.toutiao.com/c/user/5821930387/

http://www.zhihu.com/column/huangliang

素材来源官方媒体/网络新闻
修改于
继续滑动看下一个
企业存储技术
向上滑动看下一个

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存