查看原文
其他

冀教版六年级数学下册4.3《探索圆柱体积公式》微课视频辅导+练习

点右边关注我→ 绿色圃六年级资源 2021-08-08

(视频最大化,横屏观看,视觉效果更佳哦!)


电子课本

课后作业

1.填空题。

 把一个圆柱切拼成一个近似的长方体,长方体的底面积等于圆柱的(   ),长方体的高等于圆柱的(  )。圆柱的体积公式可以写成(    )。如果知道圆柱的底面半径和高,还可以写成(    )。

2.求下列圆柱的体积。

(1)半径4分米,高5分米。   

 

(2)底面周长25.12分米,高10分米。

 

3.解决问题。

(1)一个圆柱的体积是84立方厘米,底面积是21平方厘米,高是多少厘米?

 

(2)一个圆柱的体积是80立方分米,高是5分米,它的底面积是多少平方分米?

 

4. 把长80厘米的圆柱形木料锯成3段小圆柱,表面积增加了50.24平方厘米,求原来圆柱形木料的体积。



答案:

1. 底面积 高 V=ShV=πr2h

2. (1)3.14×42×5=251.2(立方分米)

(2)3.14×(25.12÷3.14÷2)2×10=502.4(立方分米)

3. (1)84÷21=4(厘米) (2)80÷5=16(平方分米)

4. 50.24÷4×80=1004.8(立方厘米)


教学设计

教材第32--34页,探索圆柱体积的公式。

教学提示:本节课是在学生掌握了长方体的体积公式,理解了圆的面积公式推导过程等基础上安排的。重点是经历探索圆柱体积公式的推导过程,能应用公式进行计算。在教学活动中,要按照教材的设计意图,抓住每个环节的重点,突破难点。教学例1时首先让学生观察,从中得出:爷爷的生日蛋糕大,就是蛋糕的体积大。亮亮的生日蛋糕小,就是蛋糕的体积小。教学例2时启发学生根据以前的知识和活动经验进行大胆猜测和设想,形成共识。师生共同推导出圆柱体积公式。

教学目标

1、经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

2、探索并掌握圆柱体积公式,能计算圆柱的体积。

3、在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学问题的探索性和挑战性,感受数学结论的确定性。

教学重点:经历探索圆柱体积公式的推导过程,能应用公式进行计算。

教学难点:理解把圆柱等分拼成的近似长方体底面与圆柱底面之间的关系

课前准备:两个不宜直观比较体积大小的茶叶筒,探索体积的课件。

教学过程

一、导入新课:

    师:生日对我们每一个人来说都是非常重要的日子。大家都不会忘记自己的生日。今天,老师想了解一下,谁知道爸爸、妈妈、爷爷、奶奶的生日呢?

    指名说,教师给予激励性评价。

    师:真不错,爸爸妈妈的生日记得这么清楚;真好,还记得爷爷奶奶的生日吗?

    师:你们知道吗?我们书中的同伴亮亮和他爷爷的生日是同一天。老师这有一张他们全家给亮亮和爷爷一起过生日的照片。

    设计意图:通过交流和激励性评价,培养学生关心长辈的情感,并自然引出主题情景。

二、探究新知

(一)圆柱体积

1.出示情境图。

师:观察上面的情景,你发现了什么?

学生可能说出很多。如:

亮亮在说“祝爷爷生日快乐”。

屋里放着生日快乐的歌曲。

桌子上放着一大一小两个蛋糕。

大蛋糕是给爷爷的,小蛋糕是给亮亮的。

爷爷的生日蛋糕大,亮亮的生日蛋糕小一点。

两个蛋糕都是圆柱形的。

师:同学们观察的非常仔细,发现了蛋糕的形状和大小。过去我们学过体积,谁能用“体积”来说一说爷爷和亮亮蛋糕的大小呢?

生:爷爷的生日蛋糕体积大,亮亮的生日蛋糕体积小。

设计意图:在学生观察情景图,交流图中事物的过程中,受到思想教育,发现数学问题。

2.师:刚才的蛋糕我们很容易就区分出哪个蛋糕的体积大,现在老师这有两个茶叶桶,你能说出哪个茶叶桶的体积大吗?

教师出示一个高的细一些和一个矮的粗一些的茶叶桶。

生可能会有不同意见,

生1:高的细一些的体积大。

生2:矮的粗一些的体积大。

师:根据生活经验,想一想,有什么办法可以知道哪个茶叶桶的体积大呢?

学生可能说道许多办法。如:

装同样多的茶叶,哪个筒装的茶叶多,哪个体积就大。

装小米,哪个桶装的小米多,哪个体积就大。……

   设计意图:问题讨论既是学习新知的需要,也是学生生活经验的提升。

3.师:真聪明,大家想出的办法很好,也很科学。但是,如果现在是两个实心的圆柱体,不是茶叶桶,怎样比较它们体积的大小呢?

学生可能会说:

用秤称,哪个重,哪个体积就大。

如果学生还说不出计算体积,教师继续启发:

师:这个办法也不错。总之,只要是实物我们就能比较。现在,如果是用图出示的两个圆柱体,怎么办呢?

生:计算,只能计算出体积了。

师:对,计算。如果我们能计算出圆柱体的体积,不管在什么情况下,都能准确地比较出哪个体积大。这节课,我们就来研究怎样计算圆柱的体积。

板书:计算圆柱的体积。

设计意图:在具体问题的讨论中,使学生感受到学会计算圆柱体积的必要性,激发学生的学习愿望。

(二)探索圆柱体积公式

1.师:怎样求圆柱的体积呢?以前我们学习过长方体、正方体的体积公式,谁能根据以前的知识和经验,大胆猜测一下,圆柱体的体积怎样计算?

生:我们学过长方体的体积是用底面积乘高计算的,圆柱的体积我想也应该是底面积乘高。

学生想不到,教师启发引导。如:

师:学习长方体、正方体的体积时,有一个统一的公式:底面积×高,根据这个公式,你能猜想到圆柱体的体积公式吗?

教师板书:底面积×高

师:同学们猜的对不对呢?下面,我们就把圆柱体体积计算转化为长方形体积计算来验证一下。谁来说一说可以是怎样做?

生:像圆一样,把圆柱的底面等分成若干份,切开拼成一个近似的   长方体。

 学生说不出,教师介绍。

    设计意图:在教师的启发下,调动学生已有的知识和经验,进行猜想和方法讨论,激发学生探求新知识的欲望。

2.师:现在,我们用课件演示一下割拼的过程。

课件演示把圆柱底面等分成16份、拼成长方体。

师:我们把一个圆柱体等分成16份,拼成了一个什么样的图形?

生:拼成了一个近似的长方体。

师:如果我们把一个圆柱体等分成32份,会有什么不同?

课件演示将圆柱底面等分成32份,分割圆柱和拼成长方体的过程。

师:我们把一个圆柱体等分成32份,拼成了一个什么样的图形?

生:还是拼成了一个近似的长方体。

设计意图:充分利用课件,简化操作的过程,提高学习的时效性。

3.师:仔细观察两次拼的结果,有什么不同?

生:第2次拼成的立体图形更接近于长方体。

师:观察得非常细致,那同学们想一想,如果等分的份数越多,拼成的长方体会怎么样?

生:等分的份数越多,拼成的立体图形就越接近于长方体。

师:真聪明。再请同学们想一想,把圆柱体转化为长方体以后,什么变了,什么没变?

生:把圆柱拼成长方体后,形状变了,体积不变。

设计意图:在观察讨论中,渗透极限思想,发展学生的数学思维,为计算方法积累现实经验。

4.师:认真观察拼出的近似长方体和圆柱,你发现它们有什么关系?

生1:近似长方体的体积就是圆柱体的体积。   

生2:近似长方体的底面积就是圆柱体的底面积。

生3:近似长方体的高就是圆柱体的高。

设计意图:问题讨论,既是对操作结果的总结指导,也为总结公式作准备。

5.师:根据这个实验,你能推导圆柱的体积计算公式吗?试着说一说。

生:这个长方体的底面积与圆柱体的底面积相等,这个长方体的高与圆柱体的高相等 。因为长方体的体积等于底面积乘高,所以,圆柱体的体积计算公式也是底面积乘高。

师:通过切拼,圆柱转化成近似的长方体。

教师适时总结并板书。

师:同学们真棒!通过把圆柱转化为长方体,我们验证了自己的猜想,还得出了圆柱体体积的计算公式。在这个公式中,如果用V表示圆柱的体积,S表示圆柱的底面积,h表示圆柱的高,那么圆柱体积的字母公式可以怎样表示?

生:V=Sh

教师板书公式。

设计意图:让学生经历圆柱体积公式的总结过程,感受数学问题的探索性和结论的确定性。


热门资料免费点击分享

部编版小学语文:

部编版1-6年级语文下册同步微课视频


冀教版小学数学:

冀教版1-6年级数学下册电子课本教材


配套资源下载:

1-6年级语文下册全册学生用书

1-6年级语文下册全册同步作业


点击阅读原文关注我每天获取最新资料

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存