其他
学徒作业-两个基因突变联合看生存效应
我喜欢把TCGA数据库的应用划分为8个领域:
1、探索各类肿瘤不同临床特征(性别、年龄、种族、临床分期)的预后(生存曲线) 2、探索各类肿瘤与对照的单个分子(mRNA,lncRNA,miRNA,甲基化,蛋白)水平的差异情况(箱线图) 3、探索各类肿瘤与对照的全局(mRNA,lncRNA,miRNA,甲基化,蛋白)水平的差异情况(差异分析流程) 4、探索各类肿瘤中两个分子(mRNA,lncRNA,miRNA,甲基化,蛋白)水平相关性(散点图) 5、探索各类肿瘤中多个分子(mRNA,lncRNA,miRNA,甲基化,蛋白)水平总结(热图) 6、探索各类肿瘤中单个分子(mRNA,lncRNA,miRNA,甲基化,蛋白)与所有其它分子相关性并且排序 7、探索各类肿瘤中单个基因突变或者单个分子(mRNA,lncRNA,miRNA,甲基化,蛋白)水平的预后(生存曲线) 8、探索各类肿瘤不同临床特征(性别、年龄、种族、临床分期)分组后的单个分子(mRNA,lncRNA,miRNA,甲基化,蛋白)特性的分布
首先下载TCGA某个癌症的maf文件,里面记录的是肿瘤病人的somatic突变信息 然后下载该癌症全部病人的临床信息 然后根据指定基因,比如上图的BAP1和SETD2在maf文件里面查询是否突变把病人分组 2个基因突变与否是可以分成4组,上图比较的是两个基因都没有突变的1个组,与剩余的3个组来看生存差异 生存曲线当然是R语言啦
集思广益-生存分析可以随心所欲根据表达量分组吗 生存分析时间点问题 寻找生存分析的最佳基因表达分组阈值 apply家族函数和for循环还是有区别的(批量生存分析出图bug) TCGA数据库生存分析的网页工具哪家强
文末友情宣传
生信爆款入门-全球听(买一得五)(第4期),你的生物信息学入门课 数据挖掘第2期(两天变三周,实力加量),医学生/临床医师首选技能提高课 生信技能树的2019年终总结 ,你的生物信息学成长宝藏 2020学习主旋律,B站74小时免费教学视频为你领路,还等什么,看啊!!!