东北大学伊廷锋教授团队在Journal of Materiomics第7卷第3期发表了题为“Approaching high-performance electrode materials of ZnCo2S4 nanoparticle wrapped carbon nanotubes for supercapacitors”的研究论文。超级电容器以其高功率密度和优异的循环稳定性被认为是最有前途的储能技术之一。超级电容器中以氧化还原反应为储能机制的赝电容器具有更高的理论容量和能量密度。过渡金属硫化物作为最常见的赝电容电极材料通常具有较高的电子导电性和更丰富的氧化还原化学,有利于提高可逆比电容和循环稳定性。其中,ZnCo2S4基材料成本低、无毒、电化学性能好,然而在高电流密度下其循环稳定性较差且可逆电容较低。提高其电化学性能的有效策略包括:(1)设计可以提供更多的活性中心的小尺寸ZnCo2S4纳米颗粒;(2)构建具有良好导电性骨架(CNT)的核壳结构的ZnCo2S4复合材料;(3)硝酸处理将含氧官能团引入CNT,增加表面粗糙度,促进ZnCo2S4和CNT之间的锚定。本文报道了由水热法制备的ZnCo2S4纳米颗粒包裹的碳纳米管,拥有良好的电子导电性和机械稳定性。碳纳米管的包裹抑制了ZnCo2S4纳米颗粒的聚集,保证了电解液与ZnCo2S4之间的有效接触,进而促进离子传输。在所有样品中,ZnCo2S4@CNTs (5 wt%)复合电极的比表面积最高,极化最小,循环可逆性最高。在电流密度为10A g-1时,ZnCo2S4@CNTs (0,2.5, 5 和10 wt%)电极的比容量分别为360.4,1012.8,1190.4和1015.6F g-1,经过10000次循环后,容量保持率分别为32.9%,81.3%,84.2%和79.3%。甚至在电流密度为30A g-1时,经过30000次循环后,ZnCo2S4@CNTs (5 wt%)复合电极的容量保持率仍为93%,展现了优异的循环稳定性。以上结果说明ZnCo2S4@CNTs复合电极具有良好的电化学性能,是一种非常有前景的赝电容电极材料。https://doi.org/10.1016/j.jmat.2020.11.015
Yi T F, Chang H, Wei T T, Qi S Y, Li Y M, Zhu Y R. Approaching High Performance Electrode Materials of ZnCo2S4 nanoparticle Wrapped carbon nanotubes for Supercapacitors [J]. J.Materiomics, 7 (2021), pp. 563-576.
CNTs-wrapped ZnCo2S4 nanoparticle composite was synthesized for the first time.
Defective CNTs offer active sites for ZnCo2S4 for electrochemical reaction.
CNTs-wrapped ZnCo2S4 exhibits promising practical application in supercapacitor.
Fig. 1 Schematic illustration of preparation process of ZnCo2S4@CNTs electrode materials
Fig. 2 (a) XRD patterns of ZnCo2S4 and ZnCo2S4@CNTs samples and XPS spectra of ZCS-3 sample: (b)survey and high-resolution spectra of (c) Zn 2p, (d) Co 2p, (e) S 2p, (f) C 1s
Fig. 3 (a) TEM image of ZCS-1, (b)SAED pattern, (c, d) TEM and (e, f) HRTEM images of ZCS-3 sample
Fig. 4 N2 adsorption-desorption curves and the corresponding pore size distribution plots for ZnCo2S4 and ZnCo2S4@CNTs samples
Fig. 5 (a) Rate performance of ZnCo2S4 and ZnCo2S4@CNTs electrodes and (b) comparison of the specific capacitance between this work (ZCS-3) and the reported mixed-metal sulfides.
Fig.6 Cycling performance of ZnCo2S4 and ZnCo2S4@CNTs electrodes at constant current density of (a) 10 A g−1 and (b) 20 A g−1, (c) cycling stabilityof ZCS-3 electrode material at 30 A g−1 (Insets are the GCD curvesof the first and the last 5 cycles)
Dr. Ting-Feng Yi is a Professor at Northeastern University. He received his MSc degree in Applied Chemistry in 2004 and PhD degree in Chemical Engineering and Technology from Harbin Institute of Technology in 2007. He joined Anhui University of Technology as an assistant professor in 2007 and got promoted to be a full professor in 2011. He currently is a full professor in Northeastern University. His research interests include the synthesis of functional materials and their application in batteries and supercapacitors. He has published 3 book chapters and more than 150 papers in peer-reviewed journals as the first author or corresponding author with more than 5400 citations (H-index: 41). He holds 11 patents related to energy storage materials.
Journal of Materiomics(JMAT),由中国硅酸盐学会主办。该刊引领材料学科发展前沿,注重报道以材料设计、制备、表征及应用技术为主线的系统性前沿研究成果。点击文末“阅读全文“可免费获取所有论文全文。 Journal of Materiomics 入选首批中国科技期刊卓越行动计划(2020年度评估为优秀),被SCI和Scopus收录,影响因子6.425(Materials Science, Multidisciplinary;Physics,Applied;Chemistry,Physical均位于Q1分区),Citescore为8.8。
The Journal of Materiomics is indexed by SCI (IF=6.425, rank in Q1 of Materials Science, Multidisciplinary;Physics,Applied;Chemistry,Physical) and Scopus (Citescore 8.8), aims to provide a continuous forum for the dissemination of research in the general field of materials science, particularly systematic studies of the relationships among composition, processing, structure, property, and performance of advanced materials. Supported by the Chinese Ceramic Society, the Journal of Materiomics is a peer-reviewed open-access journal.
For more information on submitting to Journal of Materiomics, Please read journal’s specific Guide for Author:
https://www.journals.elsevier.com/journal-of-materiomics