研制出近红外激发的纳米探针,监测神经元活动伴随的钾离子的动态变化
2020年4月18日,《科学进展》期刊在线发表了题为《高灵敏和特异的纳米探针用于近红外钾离子成像》的研究论文,报道了中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杜久林研究组、熊志奇研究组与中国科学院上海硅酸盐研究所施剑林、步文博研究组的一项合作研究。该研究开发了一种可用近红外光激发的钾离子荧光纳米探针,成功监测了斑马鱼和小鼠脑中伴随神经活动的钾离子浓度的动态变化。
细胞外钾离子浓度变化直接反映神经元电活动的改变,进而又影响神经元的兴奋性和神经元间的突触传递。因此,钾离子浓度的改变可以从另外一个侧面反应神经活动的异常,钾离子成像成为研究神经系统功能及其异常的新手段。在众多监测方法中,荧光成像具有独特的优势,可以非侵入性地获取细胞外离子浓度动态变化的时空信息,从而多尺度揭示脑部神经元间的相互作用。然而,现有的钾离子探针只能用紫外或可见光激发,因其在活组织中易于被吸收和散射而只能应用于大脑浅层。另外,现有的钾离子探针抗干扰性差,选择低,尤其难以区分钠钾离子,无法实现针对钾离子的特异性监测。因此,急需发展新型钾离子荧光探针,其要具备更高穿透深度的近红外光激发,而且对钾离子具有特异性响应。
为此,科研人员精细设计并制备了具有三层(上转换发光纳米颗粒@钾离子感应探针@钾离子选择性薄膜)核壳结构的球状纳米探针,总直径为85 nm左右。内核上转换发光纳米颗粒可以将近红外光转换成可见光,正好作为中间层钾离子荧光探针的激发光。外层2 nm厚的薄膜只允许钾离子进出纳米探针,极大地提高了探针对体内其他阳离子(如钠离子,钙离子等)的抗干扰性能,因此这层薄膜赋予探针超高的钾离子选择性。
为进一步验证上述新型钾离子纳米探针的实用性,科研人员在小鼠偏头痛模型和斑马鱼癫痫模型中运用该纳米探针检测了大脑中钾离子浓度的动态变化。皮层扩散性抑制被认为是引起偏头痛的原因。除了大规模神经元放电活动在皮层内的扩布,前人工作还发现该过程中存在强烈的钾离子浓度变化。由于离子选择性电极制备困难,且只能在极少位置同时采集信号,钾离子浓度变化的时空规律并不清楚。研究人员应用新开发的高灵敏和特异钾离子探针,在近红外光激发下观察到了钾离子浓度变化以平面波形式传播的现象,为进一步了解皮层扩散性抑制的机制提供了新技术手段。
在癫痫研究领域,有观点认为细胞外钾离子浓度的升高,不仅是神经元剧烈放电的结果,也是癫痫发作和传播的起因之一。但由于缺乏灵敏而特异的探针,这个观点一直难于验证。研究人员在癫痫斑马鱼模型上,通过双色成像同时记录神经元活动和钾离子浓度变化,发现在没有癫痫式剧烈神经活动的脑区,也可以观察到钾离子浓度升高,从而支持钾离子扩散在大规模神经活动发作与传播过程中的作用。
该研究工作同时为设计近红外光激发的其他离子特异性探针提供了新思路,为探究神经元中离子活动开辟了实时动态监测的新方法。
图注:钾离子纳米探针的设计以及感应机理。(A) 钾离子纳米探针的制备过程。上转换发光颗粒NaYF4:Yb/Tm@NaYF4:Yb/Nd 表面连续包裹一层实心二氧化硅和一层介孔二氧化硅。刻蚀实心二氧化硅成留下的空腔结构可装载钾离子荧光指示剂。最后,外表面包裹一层钾离子特异性的薄膜即成钾离子纳米感应探针。(B) 钾离子纳米探针的感应机理。外层薄膜只允许钾离子进出纳米探针,同时排斥其他阳离子。在近红外光激发下,内核上转换发光颗粒发出的紫外光可作为钾离子荧光指示剂的激发光,从而赋予探针近红外光激发的功能。
该项工作由杜久林组刘佳男博士后、尚春峰副研究员与上海硅酸盐研究所潘黎敏助理研究员在杜久林研究员、熊志奇研究员以及上海硅酸盐研究所的施剑林研究员、步文博研究员的共同指导下完成。熊志奇研究组陆斌博士、吴荣洁,蒲慕明研究组的冯芸,杜久林研究组的陈玮钰博士、张荣伟博士、卜继雯也做了重要贡献。该工作得到中国科协、国家自然科学基金委员会、科技部、中科院和上海市的资助。